【JAVA进阶篇教学】第五篇:Java多线程编程

简介: 【JAVA进阶篇教学】第五篇:Java多线程编程

博主打算从0-1讲解下java进阶篇教学,今天教学第五篇:Java多线程编程。  


在Java编程中,使用多线程可以提高程序的并发性能,但是直接创建和管理线程可能会导致资源浪费和性能下降。Java提供了线程池来管理线程的生命周期和执行任务,有效地提高了并发效率。本文将详细介绍如何使用Java线程池以及如何自定义线程池。

一、线程简介

Java通过java.util.concurrent包提供了Executor框架来管理线程池。以下是使用线程池的步骤:

  1. 创建线程池:可以通过Executors工厂类来创建不同类型的线程池。常用的线程池类型包括FixedThreadPool、CachedThreadPool、ScheduledThreadPool、SingleThreadPool等。
  2. 提交任务:使用线程池的execute()或submit()方法提交任务给线程池执行。
  3. 关闭线程池:在不需要线程池时,需要及时关闭以释放资源。可以调用线程池的shutdown()或shutdownNow()方法来关闭线程池。


二、FixedThreadPool

FixedThreadPool是一个固定大小的线程池,它会创建指定数量的线程并保持这些线程的数量不变,即使线程处于空闲状态也不会销毁。

优点

  • 线程数量固定,不会随着任务数量的增加而增加,避免了线程数量过多导致的资源消耗问题。
  • 可以控制线程的最大并发数,保证系统资源不被过度占用。

缺点

  • 固定大小的线程池可能会导致任务排队等待执行,如果任务数量过多,可能会导致性能下降。
  • 线程池大小不可动态调整,如果在某些情况下需要更多的线程来处理任务,就无法满足需求。

案例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
public class FixedThreadPoolExample {
    public static void main(String[] args) {
        // 创建固定大小的线程池,包含5个线程
        ExecutorService executor = Executors.newFixedThreadPool(5);
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}

三、CachedThreadPool

CachedThreadPool是一个可缓存的线程池,它会根据需要创建新线程,并在旧线程可用时重用它们。如果线程在60秒内没有被使用,则会被终止并移除。

优点

  • 线程池的大小可以根据需要自动调整,无需手动设置线程数量,节省了资源并提高了性能。
  • 可以灵活处理大量的短期任务,避免了长时间等待空闲线程的情况。


缺点

  • 可缓存的线程池会创建大量的线程,如果任务数量过多,可能会导致系统资源耗尽。
  • 对于长时间执行的任务,线程池可能会频繁地创建和销毁线程,增加了系统开销。

案例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
public class CachedThreadPoolExample {
    public static void main(String[] args) {
        // 创建可缓存的线程池
        ExecutorService executor = Executors.newCachedThreadPool();
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}


四、ScheduledThreadPool

ScheduledThreadPool是一个定时任务线程池,它可以在指定时间或者周期性地执行任务。

优点

  • 可以定时执行任务或周期性执行任务,非常适合需要按照一定频率执行任务的场景。
  • 线程池的大小可以根据任务数量自动调整,灵活性较高。

缺点

  • 定时任务可能会受到系统时间变更的影响,导致任务执行时间不准确。
  • 如果任务执行时间过长,可能会影响后续任务的执行。

案例

import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
 
public class ScheduledThreadPoolExample {
    public static void main(String[] args) {
        // 创建定时任务线程池,包含3个线程
        ScheduledExecutorService executor = Executors.newScheduledThreadPool(3);
 
        // 延迟1秒后执行任务,并每隔3秒执行一次
        executor.scheduleAtFixedRate(new Task(), 1, 3, TimeUnit.SECONDS);
    }
 
    static class Task implements Runnable {
        @Override
        public void run() {
            System.out.println("Task is running on thread " + Thread.currentThread().getName());
        }
    }
}


五、SingleThreadPool

SingleThreadPool是一个单线程的线程池,它只会创建一个工作线程来执行任务,保证所有任务按照指定顺序执行。

优点

  • 只有一个工作线程,保证任务按照指定顺序依次执行,避免了多线程情况下的竞争问题。
  • 线程池的大小固定,不存在线程数量动态调整的问题。

缺点

  • 只有一个线程,无法并行处理多个任务,可能会导致任务执行时间过长。
  • 如果任务出现阻塞或异常,可能会影响后续任务的执行。


案例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
public class SingleThreadPoolExample {
    public static void main(String[] args) {
        // 创建单线程的线程池
        ExecutorService executor = Executors.newSingleThreadExecutor();
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}


六、自定义线程池

除了使用Executors提供的线程池之外,我们还可以自定义线程池来满足特定的需求。在自定义线程池时,通常需要考虑以下七个参数:


  1. corePoolSize:核心线程数,即线程池中保持活动状态的最小线程数。
  2. maximumPoolSize:最大线程数,即线程池中允许的最大线程数。
  3. keepAliveTime:线程空闲时间,即当线程池中的线程数量超过corePoolSize时,多余的空闲线程等待新任务的最长时间。
  4. unit:keepAliveTime的时间单位。
  5. workQueue:工作队列,用于保存等待执行的任务。
  6. threadFactory:线程工厂,用于创建新线程。
  7. handler:拒绝策略,用于处理当工作队列已满并且无法继续接受新任务时的情况。


关于拒绝策略:

  1. AbortPolicy(默认策略)
  • 在工作队列已满的情况下,直接抛出RejectedExecutionException异常,阻止任务的执行。这是默认的拒绝策略,意味着线程池无法接受新的任务时,会抛出异常来通知调用者。
  1. CallerRunsPolicy
  • 当工作队列已满时,新提交的任务会由提交任务的线程来执行,即调用者所在的线程直接执行该任务。这样做可以减少任务的提交速度,以便控制任务的执行速度。
  1. DiscardPolicy
  • 当工作队列已满时,会丢弃新提交的任务,而不做任何处理。这意味着新提交的任务将被静默地忽略,不会得到执行,也不会抛出异常。


  1. DiscardOldestPolicy
  • 当工作队列已满时,会丢弃队列中最早提交的任务,然后尝试将新提交的任务添加到工作队列中。这样做可以确保工作队列中始终保留着最新的任务,但可能会丢失一些已提交的任务。


下面是一个自定义线程池的示例代码:

import java.util.concurrent.*;
 
public class CustomThreadPoolExample {
    public static void main(String[] args) {
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                2, // corePoolSize
                5, // maximumPoolSize
                10, // keepAliveTime
                TimeUnit.SECONDS, // unit
                new ArrayBlockingQueue<>(10), // workQueue
                Executors.defaultThreadFactory(), // threadFactory
                new ThreadPoolExecutor.AbortPolicy() // handler
        );
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}

在自定义线程池中,我们通过构造方法来设置线程池的参数,包括corePoolSize、maximumPoolSize、keepAliveTime、unit、workQueue、threadFactory和handler。通过合理地配置这些参数,我们可以创建出满足不同需求的线程池。


通过本文的介绍,相信你已经对Java中的线程池有了更深入的理解,并能够灵活地使用和自定义线程池来提高程序的并发性能。

目录
打赏
0
4
4
0
18
分享
相关文章
|
2月前
|
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
181 60
【Java并发】【线程池】带你从0-1入门线程池
k8s的出现解决了java并发编程胡问题了
Kubernetes通过提供自动化管理、资源管理、服务发现和负载均衡、持续交付等功能,有效地解决了Java并发编程中的许多复杂问题。它不仅简化了线程管理和资源共享,还提供了强大的负载均衡和故障恢复机制,确保应用程序在高并发环境下的高效运行和稳定性。通过合理配置和使用Kubernetes,开发者可以显著提高Java应用程序的性能和可靠性。
65 31
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
78 23
注解的艺术:Java编程的高级定制
注解是Java编程中的高级特性,通过内置注解、自定义注解及注解处理器,可以实现代码的高度定制和扩展。通过理解和掌握注解的使用方法,开发者可以提高代码的可读性、可维护性和开发效率。在实际应用中,注解广泛用于框架开发、代码生成和配置管理等方面,展示了其强大的功能和灵活性。
66 25
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
|
1月前
|
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
当我们创建一个`ThreadPoolExecutor`的时候,你是否会好奇🤔,它到底发生了什么?比如:我传的拒绝策略、线程工厂是啥时候被使用的? 核心线程数是个啥?最大线程数和它又有什么关系?线程池,它是怎么调度,我们传入的线程?...不要着急,小手手点上关注、点赞、收藏。主播马上从源码的角度带你们探索神秘线程池的世界...
106 0
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
Java社招面试题:一个线程运行时发生异常会怎样?
大家好,我是小米。今天分享一个经典的 Java 面试题:线程运行时发生异常,程序会怎样处理?此问题考察 Java 线程和异常处理机制的理解。线程发生异常,默认会导致线程终止,但可以通过 try-catch 捕获并处理,避免影响其他线程。未捕获的异常可通过 Thread.UncaughtExceptionHandler 处理。线程池中的异常会被自动处理,不影响任务执行。希望这篇文章能帮助你深入理解 Java 线程异常处理机制,为面试做好准备。如果你觉得有帮助,欢迎收藏、转发!
152 14
|
2月前
|
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
58 17
|
2月前
|
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
64 26
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等