【JAVA进阶篇教学】第五篇:Java多线程编程

简介: 【JAVA进阶篇教学】第五篇:Java多线程编程

博主打算从0-1讲解下java进阶篇教学,今天教学第五篇:Java多线程编程。  


在Java编程中,使用多线程可以提高程序的并发性能,但是直接创建和管理线程可能会导致资源浪费和性能下降。Java提供了线程池来管理线程的生命周期和执行任务,有效地提高了并发效率。本文将详细介绍如何使用Java线程池以及如何自定义线程池。

一、线程简介

Java通过java.util.concurrent包提供了Executor框架来管理线程池。以下是使用线程池的步骤:

  1. 创建线程池:可以通过Executors工厂类来创建不同类型的线程池。常用的线程池类型包括FixedThreadPool、CachedThreadPool、ScheduledThreadPool、SingleThreadPool等。
  2. 提交任务:使用线程池的execute()或submit()方法提交任务给线程池执行。
  3. 关闭线程池:在不需要线程池时,需要及时关闭以释放资源。可以调用线程池的shutdown()或shutdownNow()方法来关闭线程池。


二、FixedThreadPool

FixedThreadPool是一个固定大小的线程池,它会创建指定数量的线程并保持这些线程的数量不变,即使线程处于空闲状态也不会销毁。

优点

  • 线程数量固定,不会随着任务数量的增加而增加,避免了线程数量过多导致的资源消耗问题。
  • 可以控制线程的最大并发数,保证系统资源不被过度占用。

缺点

  • 固定大小的线程池可能会导致任务排队等待执行,如果任务数量过多,可能会导致性能下降。
  • 线程池大小不可动态调整,如果在某些情况下需要更多的线程来处理任务,就无法满足需求。

案例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
public class FixedThreadPoolExample {
    public static void main(String[] args) {
        // 创建固定大小的线程池,包含5个线程
        ExecutorService executor = Executors.newFixedThreadPool(5);
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}

三、CachedThreadPool

CachedThreadPool是一个可缓存的线程池,它会根据需要创建新线程,并在旧线程可用时重用它们。如果线程在60秒内没有被使用,则会被终止并移除。

优点

  • 线程池的大小可以根据需要自动调整,无需手动设置线程数量,节省了资源并提高了性能。
  • 可以灵活处理大量的短期任务,避免了长时间等待空闲线程的情况。


缺点

  • 可缓存的线程池会创建大量的线程,如果任务数量过多,可能会导致系统资源耗尽。
  • 对于长时间执行的任务,线程池可能会频繁地创建和销毁线程,增加了系统开销。

案例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
public class CachedThreadPoolExample {
    public static void main(String[] args) {
        // 创建可缓存的线程池
        ExecutorService executor = Executors.newCachedThreadPool();
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}


四、ScheduledThreadPool

ScheduledThreadPool是一个定时任务线程池,它可以在指定时间或者周期性地执行任务。

优点

  • 可以定时执行任务或周期性执行任务,非常适合需要按照一定频率执行任务的场景。
  • 线程池的大小可以根据任务数量自动调整,灵活性较高。

缺点

  • 定时任务可能会受到系统时间变更的影响,导致任务执行时间不准确。
  • 如果任务执行时间过长,可能会影响后续任务的执行。

案例

import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
 
public class ScheduledThreadPoolExample {
    public static void main(String[] args) {
        // 创建定时任务线程池,包含3个线程
        ScheduledExecutorService executor = Executors.newScheduledThreadPool(3);
 
        // 延迟1秒后执行任务,并每隔3秒执行一次
        executor.scheduleAtFixedRate(new Task(), 1, 3, TimeUnit.SECONDS);
    }
 
    static class Task implements Runnable {
        @Override
        public void run() {
            System.out.println("Task is running on thread " + Thread.currentThread().getName());
        }
    }
}


五、SingleThreadPool

SingleThreadPool是一个单线程的线程池,它只会创建一个工作线程来执行任务,保证所有任务按照指定顺序执行。

优点

  • 只有一个工作线程,保证任务按照指定顺序依次执行,避免了多线程情况下的竞争问题。
  • 线程池的大小固定,不存在线程数量动态调整的问题。

缺点

  • 只有一个线程,无法并行处理多个任务,可能会导致任务执行时间过长。
  • 如果任务出现阻塞或异常,可能会影响后续任务的执行。


案例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
public class SingleThreadPoolExample {
    public static void main(String[] args) {
        // 创建单线程的线程池
        ExecutorService executor = Executors.newSingleThreadExecutor();
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}


六、自定义线程池

除了使用Executors提供的线程池之外,我们还可以自定义线程池来满足特定的需求。在自定义线程池时,通常需要考虑以下七个参数:


  1. corePoolSize:核心线程数,即线程池中保持活动状态的最小线程数。
  2. maximumPoolSize:最大线程数,即线程池中允许的最大线程数。
  3. keepAliveTime:线程空闲时间,即当线程池中的线程数量超过corePoolSize时,多余的空闲线程等待新任务的最长时间。
  4. unit:keepAliveTime的时间单位。
  5. workQueue:工作队列,用于保存等待执行的任务。
  6. threadFactory:线程工厂,用于创建新线程。
  7. handler:拒绝策略,用于处理当工作队列已满并且无法继续接受新任务时的情况。


关于拒绝策略:

  1. AbortPolicy(默认策略)
  • 在工作队列已满的情况下,直接抛出RejectedExecutionException异常,阻止任务的执行。这是默认的拒绝策略,意味着线程池无法接受新的任务时,会抛出异常来通知调用者。
  1. CallerRunsPolicy
  • 当工作队列已满时,新提交的任务会由提交任务的线程来执行,即调用者所在的线程直接执行该任务。这样做可以减少任务的提交速度,以便控制任务的执行速度。
  1. DiscardPolicy
  • 当工作队列已满时,会丢弃新提交的任务,而不做任何处理。这意味着新提交的任务将被静默地忽略,不会得到执行,也不会抛出异常。


  1. DiscardOldestPolicy
  • 当工作队列已满时,会丢弃队列中最早提交的任务,然后尝试将新提交的任务添加到工作队列中。这样做可以确保工作队列中始终保留着最新的任务,但可能会丢失一些已提交的任务。


下面是一个自定义线程池的示例代码:

import java.util.concurrent.*;
 
public class CustomThreadPoolExample {
    public static void main(String[] args) {
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                2, // corePoolSize
                5, // maximumPoolSize
                10, // keepAliveTime
                TimeUnit.SECONDS, // unit
                new ArrayBlockingQueue<>(10), // workQueue
                Executors.defaultThreadFactory(), // threadFactory
                new ThreadPoolExecutor.AbortPolicy() // handler
        );
 
        // 提交任务给线程池执行
        for (int i = 0; i < 10; i++) {
            executor.execute(new Task(i));
        }
 
        // 关闭线程池
        executor.shutdown();
    }
 
    static class Task implements Runnable {
        private int taskId;
 
        public Task(int taskId) {
            this.taskId = taskId;
        }
 
        @Override
        public void run() {
            System.out.println("Task " + taskId + " is running on thread " + Thread.currentThread().getName());
        }
    }
}

在自定义线程池中,我们通过构造方法来设置线程池的参数,包括corePoolSize、maximumPoolSize、keepAliveTime、unit、workQueue、threadFactory和handler。通过合理地配置这些参数,我们可以创建出满足不同需求的线程池。


通过本文的介绍,相信你已经对Java中的线程池有了更深入的理解,并能够灵活地使用和自定义线程池来提高程序的并发性能。

相关文章
|
18天前
|
SQL Java 数据库
2025 年 Java 从零基础小白到编程高手的详细学习路线攻略
2025年Java学习路线涵盖基础语法、面向对象、数据库、JavaWeb、Spring全家桶、分布式、云原生与高并发技术,结合实战项目与源码分析,助力零基础学员系统掌握Java开发技能,从入门到精通,全面提升竞争力,顺利进阶编程高手。
227 1
|
18天前
|
Java 开发者
Java并发编程:CountDownLatch实战解析
Java并发编程:CountDownLatch实战解析
312 100
|
22天前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
Java 数据库 Spring
61 0
|
29天前
|
NoSQL Java 关系型数据库
超全 Java 学习路线,帮你系统掌握编程的超详细 Java 学习路线
本文为超全Java学习路线,涵盖基础语法、面向对象编程、数据结构与算法、多线程、JVM原理、主流框架(如Spring Boot)、数据库(MySQL、Redis)及项目实战等内容,助力从零基础到企业级开发高手的进阶之路。
137 1
|
1月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
98 16
|
2月前
|
缓存 并行计算 安全
关于Java多线程详解
本文深入讲解Java多线程编程,涵盖基础概念、线程创建与管理、同步机制、并发工具类、线程池、线程安全集合、实战案例及常见问题解决方案,助你掌握高性能并发编程技巧,应对多线程开发中的挑战。
|
2月前
|
安全 Java Shell
Java模块化编程(JPMS)简介与实践
本文全面解析Java 9模块化系统(JPMS),帮助开发者解决JAR地狱、类路径冲突等常见问题,提升代码的封装性、性能与可维护性。内容涵盖模块化核心概念、module-info语法、模块声明、实战迁移、多模块项目构建、高级特性及最佳实践,同时提供常见问题和面试高频题解析,助你掌握Java模块化编程精髓,打造更健壮的应用。
|
2月前
|
安全 算法 Java
Java泛型编程:类型安全与擦除机制
Java泛型详解:从基础语法到类型擦除机制,深入解析通配符与PECS原则,探讨运行时类型获取技巧及最佳实践,助你掌握泛型精髓,写出更安全、灵活的代码。
|
2月前
|
安全 Java 数据库连接
2025 年最新 Java 学习路线图含实操指南助你高效入门 Java 编程掌握核心技能
2025年最新Java学习路线图,涵盖基础环境搭建、核心特性(如密封类、虚拟线程)、模块化开发、响应式编程、主流框架(Spring Boot 3、Spring Security 6)、数据库操作(JPA + Hibernate 6)及微服务实战,助你掌握企业级开发技能。
293 3

热门文章

最新文章