Python中LSTM回归神经网络的时间序列预测

简介: Python中LSTM回归神经网络的时间序列预测

原文链接

这个问题是国际航空乘客预测问题, 数据是1949年1月到1960年12月国际航空公司每个月的乘客数量(单位:千人),共有12年144个月的数据。

链接:https://pan.baidu.com/s/1JJTe2CL0BxpmyewKCsvc0w
提取码:6666

数据趋势:
LSTM1.png

训练程序:

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import torch 
from torch import nn
from torch.autograd import Variable


#LSTM(Long Short-Term Memory)是长短期记忆网络
data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
#pandas.read_csv可以读取CSV(逗号分割)文件、文本类型的文件text、log类型到DataFrame
#原有两列,时间和乘客数量,usecols=1:只取了乘客数量一列

plt.plot(data_csv)
plt.show()
#数据预处理
data_csv = data_csv.dropna() #去掉na数据
dataset = data_csv.values      #字典(Dictionary) values():返回字典中的所有值。
dataset = dataset.astype('float32')   #astype(type):实现变量类型转换  
max_value = np.max(dataset)
min_value = np.min(dataset)
scalar = max_value-min_value
dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间
#lambda:定义一个匿名函数,区别于def
#map(f(x),Itera):map()接收函数f和一个list,把函数f依次作用在list的每个元素上,得到一个新的object并返回



'''
接着我们进行数据集的创建,我们想通过前面几个月的流量来预测当月的流量,
比如我们希望通过前两个月的流量来预测当月的流量,我们可以将前两个月的流量
当做输入,当月的流量当做输出。同时我们需要将我们的数据集分为训练集和测试
集,通过测试集的效果来测试模型的性能,这里我们简单的将前面几年的数据作为
训练集,后面两年的数据作为测试集。
'''python
def create_dataset(dataset,look_back=2):#look_back 以前的时间步数用作输入变量来预测下一个时间段
    dataX, dataY=[], []
    for i in range(len(dataset) - look_back):
        a = dataset[i:(i+look_back)]  #i和i+1赋值
        dataX.append(a)
        dataY.append(dataset[i+look_back])  #i+2赋值
    return np.array(dataX), np.array(dataY)  #np.array构建数组

data_X, data_Y = create_dataset(dataset)
#data_X: 2*142     data_Y: 1*142

#划分训练集和测试集,70%作为训练集
train_size = int(len(data_X) * 0.7)
test_size = len(data_X)-train_size
 
train_X = data_X[:train_size]
train_Y = data_Y[:train_size]
 
test_X = data_X[train_size:]
test_Y = data_Y[train_size:]
 
train_X = train_X.reshape(-1,1,2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
train_Y = train_Y.reshape(-1,1,1) #输出为1列,每列1个子元素
test_X = test_X.reshape(-1,1,2)
 
 
train_x = torch.from_numpy(train_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
train_y = torch.from_numpy(train_Y)
test_x = torch.from_numpy(test_X)


#定义模型 输入维度input_size是2,因为使用2个月的流量作为输入,隐藏层维度hidden_size可任意指定,这里为4
class lstm_reg(nn.Module):
    def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
        super(lstm_reg,self).__init__()
        #super() 函数是用于调用父类(超类)的一个方法,直接用类名调用父类
        self.rnn = nn.LSTM(input_size,hidden_size,num_layers) #LSTM 网络
        self.reg = nn.Linear(hidden_size,output_size) #Linear 函数继承于nn.Module
    def forward(self,x):   #定义model类的forward函数
        x, _ = self.rnn(x)
        s,b,h = x.shape   #矩阵从外到里的维数
                   #view()函数的功能和reshape类似,用来转换size大小
        x = x.view(s*b, h) #输出变为(s*b)*h的二维
        x = self.reg(x)
        x = x.view(s,b,-1) #卷积的输出从外到里的维数为s,b,一列
        return x

net = lstm_reg(2,4) #input_size=2,hidden_size=4
 
criterion = nn.MSELoss()  #损失函数均方差
optimizer = torch.optim.Adam(net.parameters(),lr=1e-2)
#构造一个优化器对象 Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数
#Adam 算法:params (iterable):可用于迭代优化的参数或者定义参数组的 dicts   lr:学习率


for e in range(10000):
    var_x = Variable(train_x) #转为Variable(变量)
    var_y = Variable(train_y)
 
    out = net(var_x)
    loss = criterion(out, var_y)
 
    optimizer.zero_grad() #把梯度置零,也就是把loss关于weight的导数变成0.
    loss.backward()  #计算得到loss后就要回传损失,这是在训练的时候才会有的操作,测试时候只有forward过程
    optimizer.step() #回传损失过程中会计算梯度,然后optimizer.step()根据这些梯度更新参数
    if (e+1)%100 == 0:
        print('Epoch: {}, Loss:{:.5f}'.format(e+1, loss.data[0]))
        
torch.save(net.state_dict(), 'net_params.pkl') #保存训练文件net_params.pkl
#state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系

测试程序:

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import torch 
from torch import nn
from torch.autograd import Variable
 
 
 
data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
 
# plt.plot(data_csv)
# plt.show()
#数据预处理

data_csv = data_csv.dropna() #去掉na数据
dataset = data_csv.values #字典(Dictionary) values():返回字典中的所有值。
dataset = dataset.astype('float32') # astype(type):实现变量类型转换  
max_value = np.max(dataset)
min_value = np.min(dataset)
scalar = max_value-min_value
dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间

def create_dataset(dataset,look_back=2):
    dataX, dataY=[], []
    for i in range(len(dataset)-look_back):
        a=dataset[i:(i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i+look_back])
    return np.array(dataX), np.array(dataY)
 
data_X, data_Y = create_dataset(dataset)


class lstm_reg(nn.Module):
    def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
        super(lstm_reg,self).__init__()
 
        self.rnn = nn.LSTM(input_size,hidden_size,num_layers)
        self.reg = nn.Linear(hidden_size,output_size)
 
    def forward(self,x):
        x, _ = self.rnn(x)
        s,b,h = x.shape
        x = x.view(s*b, h)
        x = self.reg(x)
        x = x.view(s,b,-1)
        return x
 
 
net = lstm_reg(2,4)

net.load_state_dict(torch.load('net_params.pkl')) 

data_X = data_X.reshape(-1, 1, 2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
data_X = torch.from_numpy(data_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
var_data = Variable(data_X) #转为Variable(变量)
pred_test = net(var_data)  #产生预测结果
pred_test = pred_test.view(-1).data.numpy() #view(-1)输出为一行

plt.plot(pred_test, 'r', label='prediction')
plt.plot(dataset, 'b', label='real')
plt.legend(loc='best') #loc显示图像  'best'表示自适应方式
plt.show()

预测结果:

LSTM2.png

学习更多编程知识,请关注我的公众号:

代码的路

相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
217 55
|
2月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
88 2
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
121 6
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
5天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
30天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
72 3
|
2月前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
55 6
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
71 8
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络