DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)


目录

基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

输出结果

实现代码


基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

       该数据包含9个变量的20640个观测值,该数据集包含平均房屋价值作为目标变量和以下输入变量(特征):平均收入、房屋平均年龄、平均房间、平均卧室、人口、平均占用、纬度和经度。

输出结果

epoch: 20 batch_id: 83 Batch loss 0.5640518069267273
……
epoch: 90 batch_id: 203 Batch loss 0.6403363943099976
epoch: 90 batch_id: 204 Batch loss 0.45315566658973694
epoch: 90 batch_id: 205 Batch loss 0.5528439879417419
epoch: 90 batch_id: 206 Batch loss 0.386596143245697

实现代码

1. import tensorflow as tf
2. import numpy as np 
3. from sklearn.datasets import fetch_california_housing 
4. from sklearn.preprocessing import StandardScaler 
5. 
6. scaler = StandardScaler()  #将特征进行标准归一化
7. #获取房价数据
8. housing = fetch_california_housing() 
9. m,n = housing.data.shape 
10. print (housing.keys())        #输出房价的key
11. print (housing.feature_names) #输出房价的特征:
12. print (housing.target)  
13. print (housing.DESCR)  
14. 
15. 
16. housing_data_plus_bias = np.c_[np.ones((m,1)), housing.data] 
17. scaled_data = scaler. fit_transform(housing.data) 
18. data = np.c_[np.ones((m,1)),scaled_data] 
19. 
20. # #T1、传统方式
21. # A = tf.placeholder(tf.float32,shape=(None,3)) 
22. # B = A + 5 
23. # with tf.Session() as sess: 
24. #     test_b_l = B.eval(feed_dict={A:[[1,2,3]]}) 
25. #     test_b_2 = B.eval(feed_dict={A:[[4,5,6],[7,8,9]]}) 
26. #     print(test_b_1) 
27. #     print(test_b_2) 
28. 
29. #T2、采用mini-batch方式
30. X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X") 
31. y = tf.placeholder(tf.float32, shape=(None, 1), name="y") 
32. #采用optimizer计算梯度,设置参数
33. n_epochs = 100
34. learning_rate = 0.01
35. batch_size=100
36. n_batches = int(np.ceil(m / batch_size)) 
37. theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
38. y_pred = tf.matmul(X, theta, name="predictions") 
39. error = y_pred - y 
40. mse = tf.reduce_mean(tf.square(error), name="mse") 
41. optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) 
42. training_op = optimizer.minimize(mse) 
43. init = tf.global_variables_initializer() 
44. 
45. #定义mini-batch取数据方式
46. def fetch_batch(epoch, batch_index, batch_size): 
47.     np.random.seed(epoch * n_batches + batch_index) 
48.     indices = np.random.randint(m, size=batch_size)
49.     X_batch  = data[indices] 
50.     y_batch = housing.target.reshape(-1, 1)[indices] 
51. return X_batch, y_batch
52. #mini-batch计算过程
53. with tf.Session() as sess: 
54.     sess.run(init) 
55. for epoch in range(n_epochs):#/gfeMat 
56.         avg_cost = 0.
57. for batch_index in range(n_batches): 
58.             X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size) 
59.             sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) 
60. 
61. if epoch % 10 == 0: 
62.                 total_loss = 0
63.                 acc_train = mse.eval(feed_dict={X: X_batch, y: y_batch}) 
64.                 total_loss += acc_train 
65. #print(acc_train, total_loss)
66. print("epoch:",epoch, "batch_id:",batch_index, "Batch loss", total_loss) 
67.


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
AI顶会ICLR 2022 | WPipe 蚂蚁集团大规模 DNN 训练的流水线并行技术
AI顶会ICLR 2022 | WPipe 蚂蚁集团大规模 DNN 训练的流水线并行技术
753 0
AI顶会ICLR 2022 | WPipe 蚂蚁集团大规模 DNN 训练的流水线并行技术
|
机器学习/深度学习 传感器 资源调度
时序预测 | MATLAB实现DNN深度神经网络时间序列预测未来(多指标,多图输出)
时序预测 | MATLAB实现DNN深度神经网络时间序列预测未来(多指标,多图输出)
|
机器学习/深度学习 传感器 资源调度
回归预测 | MATLAB实现DNN全连接神经网络多输入多输出
回归预测 | MATLAB实现DNN全连接神经网络多输入多输出
|
机器学习/深度学习 算法 数据可视化
基于PaddlePaddle框架对CIFAR-100数据集在简易CNN(LeNet-5修改)和简易DNN的效果对比
基于PaddlePaddle框架对CIFAR-100数据集在简易CNN(LeNet-5修改)和简易DNN的效果对比
297 0
基于PaddlePaddle框架对CIFAR-100数据集在简易CNN(LeNet-5修改)和简易DNN的效果对比
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
2月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
40 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
2月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
43 0
|
2月前
|
机器学习/深度学习 自然语言处理 TensorFlow

热门文章

最新文章