DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,182元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)


目录

基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

输出结果

实现代码


基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

       该数据包含9个变量的20640个观测值,该数据集包含平均房屋价值作为目标变量和以下输入变量(特征):平均收入、房屋平均年龄、平均房间、平均卧室、人口、平均占用、纬度和经度。

输出结果

epoch: 20 batch_id: 83 Batch loss 0.5640518069267273
……
epoch: 90 batch_id: 203 Batch loss 0.6403363943099976
epoch: 90 batch_id: 204 Batch loss 0.45315566658973694
epoch: 90 batch_id: 205 Batch loss 0.5528439879417419
epoch: 90 batch_id: 206 Batch loss 0.386596143245697

实现代码

1. import tensorflow as tf
2. import numpy as np 
3. from sklearn.datasets import fetch_california_housing 
4. from sklearn.preprocessing import StandardScaler 
5. 
6. scaler = StandardScaler()  #将特征进行标准归一化
7. #获取房价数据
8. housing = fetch_california_housing() 
9. m,n = housing.data.shape 
10. print (housing.keys())        #输出房价的key
11. print (housing.feature_names) #输出房价的特征:
12. print (housing.target)  
13. print (housing.DESCR)  
14. 
15. 
16. housing_data_plus_bias = np.c_[np.ones((m,1)), housing.data] 
17. scaled_data = scaler. fit_transform(housing.data) 
18. data = np.c_[np.ones((m,1)),scaled_data] 
19. 
20. # #T1、传统方式
21. # A = tf.placeholder(tf.float32,shape=(None,3)) 
22. # B = A + 5 
23. # with tf.Session() as sess: 
24. #     test_b_l = B.eval(feed_dict={A:[[1,2,3]]}) 
25. #     test_b_2 = B.eval(feed_dict={A:[[4,5,6],[7,8,9]]}) 
26. #     print(test_b_1) 
27. #     print(test_b_2) 
28. 
29. #T2、采用mini-batch方式
30. X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X") 
31. y = tf.placeholder(tf.float32, shape=(None, 1), name="y") 
32. #采用optimizer计算梯度,设置参数
33. n_epochs = 100
34. learning_rate = 0.01
35. batch_size=100
36. n_batches = int(np.ceil(m / batch_size)) 
37. theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
38. y_pred = tf.matmul(X, theta, name="predictions") 
39. error = y_pred - y 
40. mse = tf.reduce_mean(tf.square(error), name="mse") 
41. optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) 
42. training_op = optimizer.minimize(mse) 
43. init = tf.global_variables_initializer() 
44. 
45. #定义mini-batch取数据方式
46. def fetch_batch(epoch, batch_index, batch_size): 
47.     np.random.seed(epoch * n_batches + batch_index) 
48.     indices = np.random.randint(m, size=batch_size)
49.     X_batch  = data[indices] 
50.     y_batch = housing.target.reshape(-1, 1)[indices] 
51. return X_batch, y_batch
52. #mini-batch计算过程
53. with tf.Session() as sess: 
54.     sess.run(init) 
55. for epoch in range(n_epochs):#/gfeMat 
56.         avg_cost = 0.
57. for batch_index in range(n_batches): 
58.             X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size) 
59.             sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) 
60. 
61. if epoch % 10 == 0: 
62.                 total_loss = 0
63.                 acc_train = mse.eval(feed_dict={X: X_batch, y: y_batch}) 
64.                 total_loss += acc_train 
65. #print(acc_train, total_loss)
66. print("epoch:",epoch, "batch_id:",batch_index, "Batch loss", total_loss) 
67.


相关文章
|
19天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
125 0
|
11天前
|
存储 算法 安全
即时通讯安全篇(三):一文读懂常用加解密算法与网络通讯安全
作为开发者,也会经常遇到用户对数据安全的需求,当我们碰到了这些需求后如何解决,如何何种方式保证数据安全,哪种方式最有效,这些问题经常困惑着我们。52im社区本次着重整理了常见的通讯安全问题和加解密算法知识与即时通讯/IM开发同行们一起分享和学习。
100 9
|
19天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
16天前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
19天前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
|
19天前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
|
11天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
13天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
100 1
|
12天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
11天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
102 14

热门文章

最新文章