DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)


目录

基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

输出结果

实现代码


基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

       该数据包含9个变量的20640个观测值,该数据集包含平均房屋价值作为目标变量和以下输入变量(特征):平均收入、房屋平均年龄、平均房间、平均卧室、人口、平均占用、纬度和经度。

输出结果

epoch: 20 batch_id: 83 Batch loss 0.5640518069267273
……
epoch: 90 batch_id: 203 Batch loss 0.6403363943099976
epoch: 90 batch_id: 204 Batch loss 0.45315566658973694
epoch: 90 batch_id: 205 Batch loss 0.5528439879417419
epoch: 90 batch_id: 206 Batch loss 0.386596143245697

实现代码

1. import tensorflow as tf
2. import numpy as np 
3. from sklearn.datasets import fetch_california_housing 
4. from sklearn.preprocessing import StandardScaler 
5. 
6. scaler = StandardScaler()  #将特征进行标准归一化
7. #获取房价数据
8. housing = fetch_california_housing() 
9. m,n = housing.data.shape 
10. print (housing.keys())        #输出房价的key
11. print (housing.feature_names) #输出房价的特征:
12. print (housing.target)  
13. print (housing.DESCR)  
14. 
15. 
16. housing_data_plus_bias = np.c_[np.ones((m,1)), housing.data] 
17. scaled_data = scaler. fit_transform(housing.data) 
18. data = np.c_[np.ones((m,1)),scaled_data] 
19. 
20. # #T1、传统方式
21. # A = tf.placeholder(tf.float32,shape=(None,3)) 
22. # B = A + 5 
23. # with tf.Session() as sess: 
24. #     test_b_l = B.eval(feed_dict={A:[[1,2,3]]}) 
25. #     test_b_2 = B.eval(feed_dict={A:[[4,5,6],[7,8,9]]}) 
26. #     print(test_b_1) 
27. #     print(test_b_2) 
28. 
29. #T2、采用mini-batch方式
30. X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X") 
31. y = tf.placeholder(tf.float32, shape=(None, 1), name="y") 
32. #采用optimizer计算梯度,设置参数
33. n_epochs = 100
34. learning_rate = 0.01
35. batch_size=100
36. n_batches = int(np.ceil(m / batch_size)) 
37. theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
38. y_pred = tf.matmul(X, theta, name="predictions") 
39. error = y_pred - y 
40. mse = tf.reduce_mean(tf.square(error), name="mse") 
41. optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) 
42. training_op = optimizer.minimize(mse) 
43. init = tf.global_variables_initializer() 
44. 
45. #定义mini-batch取数据方式
46. def fetch_batch(epoch, batch_index, batch_size): 
47.     np.random.seed(epoch * n_batches + batch_index) 
48.     indices = np.random.randint(m, size=batch_size)
49.     X_batch  = data[indices] 
50.     y_batch = housing.target.reshape(-1, 1)[indices] 
51. return X_batch, y_batch
52. #mini-batch计算过程
53. with tf.Session() as sess: 
54.     sess.run(init) 
55. for epoch in range(n_epochs):#/gfeMat 
56.         avg_cost = 0.
57. for batch_index in range(n_batches): 
58.             X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size) 
59.             sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) 
60. 
61. if epoch % 10 == 0: 
62.                 total_loss = 0
63.                 acc_train = mse.eval(feed_dict={X: X_batch, y: y_batch}) 
64.                 total_loss += acc_train 
65. #print(acc_train, total_loss)
66. print("epoch:",epoch, "batch_id:",batch_index, "Batch loss", total_loss) 
67.


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
86 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
3天前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
10 2
|
3天前
|
机器学习/深度学习 存储 算法
基于SFLA算法的神经网络优化matlab仿真
**摘要:** 使用MATLAB2022a,基于SFLA算法优化神经网络,降低训练误差。程序创建12个神经元的前馈网络,训练后计算性能。SFLA算法寻找最优权重和偏置,更新网络并展示训练与测试集的预测效果,以及误差对比。SFLA融合蛙跳与遗传算法,通过迭代和局部全局搜索改善网络性能。通过调整算法参数和与其他优化算法结合,可进一步提升模型预测精度。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习算法入门:从K-means到神经网络
【6月更文挑战第26天】机器学习入门:从K-means到神经网络。文章涵盖了K-means聚类、逻辑回归、决策树和神经网络的基础原理及应用场景。K-means用于数据分组,逻辑回归适用于二分类,决策树通过特征划分做决策,神经网络则在复杂任务如图像和语言处理中大显身手。是初学者的算法导览。
|
3天前
|
机器学习/深度学习 算法 数据可视化
基于googlenet深度学习网络的睁眼闭眼识别算法matlab仿真
**算法预览图展示睁眼闭眼识别效果;使用Matlab2022a,基于GoogLeNet的CNN模型,对图像进行分类预测并可视化。核心代码包括图像分类及随机样本显示。理论概述中,GoogLeNet以高效Inception模块实现眼部状态的深度学习识别,确保准确性与计算效率。附带三张相关图像。**
|
3天前
|
机器学习/深度学习 并行计算 算法
技术经验解读:《人工神经网络》第9章遗传算法原理
技术经验解读:《人工神经网络》第9章遗传算法原理
|
1天前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
5天前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
27 8
|
7天前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
8天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。

热门文章

最新文章