ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)

简介: ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)


目录

利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集【13+1,506】回归预测(模型评估、推理并导到csv)

输出数据集

1、LiR 线性回归算法

2、kNNR k最近邻算法

3、SVMR 支持向量机算法

4、DTR 决策树算法

5、RFR 随机森林算法

6、ExtraTR 极端随机树算法

7、SGDR 随机梯度上升算法

8、GBR 提升树算法

9、LightGBMR 算法

10、XGBR 算法

模型评估效果综合比较

模型推理预测综合比较


 

 

 

 

相关文章

ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)

ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)实现

利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集【13+1,506】回归预测(模型评估、推理并导到csv)

输出数据集

1. 数据集的描述:  
2.  .. _boston_dataset:
3. 
4. Boston house prices dataset
5. ---------------------------
6. 
7. **Data Set Characteristics:**  
8. 
9.     :Number of Instances: 506
10. 
11.     :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
12. 
13.     :Attribute Information (in order):
14.         - CRIM     per capita crime rate by town
15.         - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
16.         - INDUS    proportion of non-retail business acres per town
17.         - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
18.         - NOX      nitric oxides concentration (parts per 10 million)
19.         - RM       average number of rooms per dwelling
20.         - AGE      proportion of owner-occupied units built prior to 1940
21.         - DIS      weighted distances to five Boston employment centres
22.         - RAD      index of accessibility to radial highways
23.         - TAX      full-value property-tax rate per $10,000
24.         - PTRATIO  pupil-teacher ratio by town
25.         - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
26.         - LSTAT    % lower status of the population
27.         - MEDV     Median value of owner-occupied homes in $1000's
28. 
29.     :Missing Attribute Values: None
30. 
31.     :Creator: Harrison, D. and Rubinfeld, D.L.
32. 
33. This is a copy of UCI ML housing dataset.
34. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
35. 
36. 
37. This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
38. 
39. The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
40. prices and the demand for clean air', J. Environ. Economics & Management,
41. vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
42. ...', Wiley, 1980.   N.B. Various transformations are used in the table on
43. pages 244-261 of the latter.
44. 
45. The Boston house-price data has been used in many machine learning papers that address regression
46. problems.   
47.      
48. .. topic:: References
49. 
50.    - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
51.    - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
52. 
53. 数据的初步查验:输出回归目标值target的差异
54. target_max 50.0
55. target_min 5.0
56. target_avg 22.532806324110677

 

1、LiR 线性回归算法

1. LiR Score value: 0.6757955014529482
2. LiR R2    value: 0.6757955014529482
3. LiR MAE   value: 3.5325325437053974
4. LiR MSE   value: 25.13923652035344

 

2、kNNR k最近邻算法

 

3、SVMR 支持向量机算法

 

 

4、DTR 决策树算法

 

5、RFR 随机森林算法

 

6、ExtraTR 极端随机树算法

 

7、SGDR 随机梯度上升算法

 

 

 

8、GBR 提升树算法

 

 

9、LightGBMR 算法

 

10、XGBR 算法

 

 

模型评估效果综合比较

 

模型推理预测综合比较

 

相关文章
|
4月前
|
机器学习/深度学习 算法 数据挖掘
从零到精通:Scikit-learn在手,数据分析与机器学习模型评估不再难!
【10月更文挑战第4天】在数据科学领域,模型评估是连接理论与实践的桥梁,帮助我们理解模型在未知数据上的表现。对于初学者而言,众多评估指标和工具常令人困惑。幸运的是,Scikit-learn 这一强大的 Python 库使模型评估变得简单。本文通过问答形式,带你逐步掌握 Scikit-learn 的评估技巧。Scikit-learn 提供了丰富的工具,如交叉验证、评分函数(准确率、精确率、召回率、F1 分数)、混淆矩阵和 ROC 曲线等。
69 1
|
5月前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
4月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
|
5月前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
62 3
|
5月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
69 1
|
5月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
6月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
109 3
|
6月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
88 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
186 4
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
212 13
机器学习算法的优化与改进:提升模型性能的策略与方法

热门文章

最新文章