Python爬虫如何加速?异步、协程还是多进程?分享一个常用做法,萌新也能看懂

简介: 天下代码,唯快不破

最近在知识星球:Python读者圈,遇到读者提问:Python爬虫如何加速?

这个问题涉及到一个爬虫里,甚至是整个Python编程里都非常重要的问题:

如果同时下载1w张图片,如何有效地加速程序运行,缩短下载时间?

今天我们一起来看一下常用的解决方案。

1、为什么慢?

首先我们先看一下,原来的代码里,是什么原因导致程序慢的?
下面是代码和运行结果:

import office

for i in range(1, 18):
    url = 'https://www.python-office.com/api/img-cdn/test/spider/{}.jpg'.format(str(i))
    office.image.down4img(url, output_name=str(i))

顺序执行看起来很完美,但是完美的背后是不是有陷阱呢?

为了更好的理解这个代码,我们先举一个例子:你面前有10台洗衣机编号是从1到10,里面转满了衣服需要你清洗,有的脏可能要强力洗洗的久,有的干净只需要速洗洗的快。

清洗以后,需要你记录下他们的清理顺序,有下列2种方案供你选择:

  1. 一个挨一个的洗完。先启动洗衣机1号,等1号洗完了,再启动2号,依次类推。这样你记录的结果和上图一样,是完美的按顺序完成。
  2. 先同时打开所有的洗衣机,哪一个洗完了就记录哪一个。因为有的洗得快,有的洗得慢,这样你记录的结果是混乱的。

哪种方式最快呢?毫无疑问是第2种,因为可以让所有的洗衣机同时工作,时间资源可以复用。

回到我们的程序,我们下载一张图片也是分为2步:请求图片资源,保存到本地。

上面的代码之所以慢,就是因为它是请求到第1张的资源,保存到本地之后,再去请求第2张的资源。看起来很完美,但其实问题很大。

如何加快速度呢?我们如果可以先请求到所有的图片资源(打开所有的洗衣机),然后再统一保存图片(哪台洗完衣服,就先记录哪台),这样是不是就会快很多呢?

下面我们按照第2种思路,在Python里的实现实现一下。

2、解决代码

Talk is cheap,show me the code.
先上代码和运行结果。

import asyncio
from aiohttp import ClientSession

tasks = []
url = "https://www.python-office.com/api/img-cdn/test/spider/{}.jpg"

async def hello(url, i='wanfeng', type='jpg'):
    async with ClientSession() as session:
        async with session.get(url) as response:
            if response.status==200:
                response = await response.read()
                # print(response)
                async with aiofiles.open('.'.join((str(i), type)), 'wb') as output_img:
                    # for chunk in response:
                    await output_img.write(response)
                    output_img.close()
                print(f"下载成功,图片名称:{'.'.join((str(i), type))}")


def run():
    for i in range(1, 18):
        task = asyncio.ensure_future(hello(url.format(i), i))
        tasks.append(task)

def main():
    loop = asyncio.get_event_loop()
    run()
    loop.run_until_complete(asyncio.wait(tasks))

if __name__ == '__main__':
    main()


主要使用的库是:

  • asyncio:协程,让图片下载不按顺序,可以加快速度
  • aiohttp:替代requests,用来异步发送请求。
  • aiofiles:异步写入文件内容

3、还有其它方法吗?

还有多进程也可以试试,但是多进程更大的优势体现在计算密集型的场景下。
爬虫获取网络请求属于I/O密集型操作,多进程的优势不大。

# -*- coding:utf-8 -*-
import multiprocessing
import os, time
from multiprocessing import Pool

import requests

url = "https://www.python-office.com/api/img-cdn/test/spider/{}.jpg"

def down4img(url, output_name, type):
    """
    下载指定url的一张图片,支持所有格式:jpg\png\gif .etc
    """
    # print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(), os.getppid(), output_name))

    response = requests.get(url, stream=True)
    with open('.'.join((output_name, type)), 'wb') as output_img:
        for chunk in response:
            output_img.write(chunk)
        output_img.close()
        print(f"下载成功,图片名称:{'.'.join((output_name, type))}")
    # print("子进程终止>>> pid={},ppid={},编号{}".format(os.getpid(), os.getppid(), output_name))



def main():
    print("主进程开始执行>>> pid={}".format(os.getpid()))
    ps = Pool(multiprocessing.cpu_count())
    ps = Pool(3)
    for i in range(1, 18):
        # ps.apply(worker,args=(i,))          # 同步执行
        output_name = str(i)
        type = 'jpg'
        ps.apply_async(down4img, args=(url.format(str(i)), output_name, type,))  # 异步执行
        # ps.apply(down4img, args=(url.format(str(i)), output_name[0], type,))  # 同步执行

    # 关闭进程池,停止接受其它进程
    ps.close()
    # 阻塞进程
    ps.join()
    print("主进程终止")


if __name__ == '__main__':
    main()

主要使用的库是:

  • multiprocessing:创建进程池

4、写在最后

希望能给你带来帮助。如果想系统的学习Python,欢迎大家扫码加入我的知识星球👉Python读者圈,我们一起学习提高~

相关文章
|
4月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
4月前
|
数据采集 存储 C++
Python异步爬虫(aiohttp)加速微信公众号图片下载
Python异步爬虫(aiohttp)加速微信公众号图片下载
|
28天前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
3月前
|
Go 调度 Python
Golang协程和Python协程用法上的那些“不一样”
本文对比了 Python 和 Go 语言中协程的区别,重点分析了调度机制和执行方式的不同。Go 的协程(goroutine)由运行时自动调度,启动后立即执行;而 Python 协程需通过 await 显式调度,依赖事件循环。文中通过代码示例展示了两种协程的实际运行效果。
185 7
|
2月前
|
数据采集 网络协议 API
协程+连接池:高并发Python爬虫的底层优化逻辑
协程+连接池:高并发Python爬虫的底层优化逻辑
|
6月前
|
数据采集 安全 网络安全
使用aiohttp实现异步HTTPS爬虫的SSL优化
使用aiohttp实现异步HTTPS爬虫的SSL优化
340 81
|
4月前
|
监控 编译器 Python
如何利用Python杀进程并保持驻留后台检测
本教程介绍如何使用Python编写进程监控与杀进程脚本,结合psutil库实现后台驻留、定时检测并强制终止指定进程。内容涵盖基础杀进程、多进程处理、自动退出机制、管理员权限启动及图形界面设计,并提供将脚本打包为exe的方法,适用于需持续清理顽固进程的场景。
|
4月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
10月前
|
消息中间件 调度
如何区分进程、线程和协程?看这篇就够了!
本课程主要探讨操作系统中的进程、线程和协程的区别。进程是资源分配的基本单位,具有独立性和隔离性;线程是CPU调度的基本单位,轻量且共享资源,适合并发执行;协程更轻量,由程序自身调度,适合I/O密集型任务。通过学习这些概念,可以更好地理解和应用它们,以实现最优的性能和资源利用。
342 11
|
9月前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
439 0

推荐镜像

更多