matplotlib的基本图表配置之plot的使用(三)

简介: matplotlib的基本图表配置之plot的使用

导入库

import matplotlib.pyplot as plt

构建画布


plt.plot()

image.png


没有任何配置的plot的基本图形是这样,默认X轴的范围是:-0.04至0.04


图形的构成

- Figure - 画布

- Axes - 坐标系

- Axis - 坐标轴(X轴,y轴)

- 图形 - plot()折线图,scatter()散点图,bar()柱状图, pie()饼图

- 标题、图例、标签、......


# 官网文档: https://matplotlib.org/
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2 * np.pi, 200)  # 
y = np.sin(x)
# plt.plot(x,y) : 其实等价于完成了下面的代码
fig, ax = plt.subplots()
ax.plot(x, y)
plt.show()

image.png


# 构造数据
# 位置 (2维:x,y一一对应)
x = np.linspace(0, 2 * np.pi, 200)  # 从0到2pi的200个值
y = np.sin(x)                       # 从sin(0)到sin(2pi)的200个值
# 颜色(0维)
c = 'red'
c = 'r'
c = '#FF0000'
# 大小(0维): 线宽
lw = 1
# 生成一个Figure画布和一个Axes坐标系
fig, ax = plt.subplots()
# 在生成的坐标系下画折线图
ax.plot(x, y, c, linewidth=lw)
# 显示图形
plt.show()


image.png

绘制五角星(将图表放大即可)


点击此处去官网探索一下吧!


Writing mathematical expressions — Matplotlib 3.5.1 documentation


还可以绘制其他的图形


# 点的颜色,形状,大小

plt.plot(1,1,color='r',marker='*',markersize=120)

参考上面的图表类型,我们可以绘制一些我们需要的图标




image.png



image.png



image.png



这类高级marker使用marker ='$\circledR$'来调用

可以显示的形状    marker名称
ϖ   \varpi
ϱ   \varrho
ς   \varsigma
ϑ   \vartheta
ξ   \xi
ζ   \zeta
Δ   \Delta
Γ   \Gamma
Λ   \Lambda
Ω   \Omega
Φ   \Phi
Π   \Pi
Ψ   \Psi
Σ   \Sigma
Θ   \Theta
Υ   \Upsilon
Ξ   \Xi
℧   \mho
∇   \nabla
ℵ   \aleph
ℶ   \beth
ℸ   \daleth
ℷ   \gimel
/   /
[   [
⇓   \Downarrow
⇑   \Uparrow
‖   \Vert
↓   \downarrow
⟨   \langle
⌈   \lceil
⌊   \lfloor
⌞   \llcorner
⌟   \lrcorner
⟩   \rangle
⌉   \rceil
⌋   \rfloor
⌜   \ulcorner
↑   \uparrow
⌝   \urcorner
\vert
{   \{
\|
}   \}
]   ]
|
⋂   \bigcap
⋃   \bigcup
⨀   \bigodot
⨁   \bigoplus
⨂   \bigotimes
⨄   \biguplus
⋁   \bigvee
⋀   \bigwedge
∐   \coprod
∫   \int
∮   \oint
∏   \prod
∑   \sum


相关文章
|
4月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
73 8
|
2月前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
92 5
|
4月前
|
数据可视化 Python
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
70 17
|
5月前
|
数据可视化 物联网 区块链
探索Python中的数据可视化:使用Matplotlib和Seaborn绘制图表探索未来:区块链、物联网与虚拟现实的融合趋势与应用前景
【8月更文挑战第30天】本文旨在引导读者通过Python编程语言,利用Matplotlib和Seaborn库,轻松掌握数据可视化技术。文章以浅显易懂的语言,结合实用的代码示例,从基础的图表绘制到高级定制功能,逐步深入讲解如何在数据分析中运用这些工具。无论你是编程新手还是希望提升可视化技能的开发者,都能在这篇文章中找到有价值的信息,让你的数据“活”起来。
|
5月前
|
数据可视化 Python
Matplotlib基本图表的完全指南
【8月更文挑战第21天】Matplotlib 是一款强大的 Python 图表库,适用于数据科学家、工程师及研究人员,帮助直观地探索与展示数据。本文全面介绍了 Matplotlib 的使用方法:从安装到导入库,再到创建基础图表如折线图、散点图、柱状图及饼图。此外还探讨了图表样式的自定义、子图的使用、图表保存以及利用数据集绘图的方法。文章进一步展示了如何绘制多系列数据、应用样式表,并提供了三维图等高级功能的示例。通过这些指南,读者能够掌握 Matplotlib 的基本与进阶用法,从而有效地可视化复杂数据。
85 6
|
5月前
|
机器学习/深度学习 数据可视化 数据挖掘
Python中的数据可视化:使用Matplotlib库绘制图表
【8月更文挑战第30天】数据可视化是数据科学和分析的关键组成部分,它帮助我们以直观的方式理解数据。在Python中,Matplotlib是一个广泛使用的绘图库,提供了丰富的功能来创建各种类型的图表。本文将介绍如何使用Matplotlib库进行数据可视化,包括安装、基本概念、绘制不同类型的图表以及自定义图表样式。我们将通过实际代码示例来演示如何应用这些知识,使读者能够轻松地在自己的项目中实现数据可视化。
|
5月前
|
数据可视化 API Python
一行代码让matplotlib图表变高大上
一行代码让matplotlib图表变高大上
43 0
|
5月前
|
数据可视化 数据挖掘 Python
数据可视化不再难!Matplotlib带你轻松绘制精美图表,让数据分析焕发光彩!
【8月更文挑战第22天】今天分享如何用Python的Matplotlib库绘制多样图表。Matplotlib是数据可视化的强大工具,对数据分析至关重要。本文分六部分:首先介绍环境准备,包括安装和配置;随后通过四个案例演示折线图、柱状图、饼图及散点图的绘制方法;最后总结并鼓励大家进一步探索Matplotlib的丰富功能。跟着示例操作,你将学会基本图表的制作,提升数据展示技能。
55 0
|
5月前
|
数据可视化 Python
Python的Matplotlib库创建动态图表
【8月更文挑战第19天】Matplotlib是Python中广泛使用的数据可视化库,擅长生成静态图表如折线图、散点图等。本文介绍如何利用其创建动态图表,通过动画展示数据变化,加深对数据的理解。文章涵盖动态折线图、散点图、柱状图、饼图及热力图的制作方法,包括开启交互模式、更新数据和重绘图表等关键步骤,帮助读者掌握Matplotlib动态图表的实用技巧。
82 0