DSW环境创建自定义python环境,使用更高版本python

简介: DSW环境创建自定义python环境,使用更高版本python

创建环境

打开https://dsw-dev.data.aliyun.com/,进入DSW环境
DSW环境默认的python环境配置python版本为3.6,但是在实际开发过程中,安装软件包依赖更高的python版本,这样一些软件包不能使用合适的版本,那有什么方法可以使用吗,这里就是用conda再创建一个环境,安装更新的版本软件。

File->New->Terminal打开终端,
使用conda create命令创建名为py39的环境,使用的python版本为3.9

sh-4.2$ which conda
/opt/conda/bin/conda
sh-4.2$ conda create --name py39 python=3.9 # 创建python3.9的虚拟环境
Collecting package metadata (current_repodata.json): done
Solving environment: done


==> WARNING: A newer version of conda exists. <==
  current version: 4.9.2
  latest version: 4.13.0

Please update conda by running

    $ conda update -n base conda



## Package Plan ##

  environment location: /home/admin/.conda/envs/py39

  added / updated specs:
    - python=3.9


The following NEW packages will be INSTALLED:

  _libgcc_mutex      anaconda/pkgs/main/linux-64::_libgcc_mutex-0.1-main
  _openmp_mutex      anaconda/pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu
  ca-certificates    anaconda/pkgs/main/linux-64::ca-certificates-2022.4.26-h06a4308_0
  certifi            anaconda/pkgs/main/linux-64::certifi-2022.6.15-py39h06a4308_0
  ld_impl_linux-64   anaconda/pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1
  libffi             anaconda/pkgs/main/linux-64::libffi-3.3-he6710b0_2
  libgcc-ng          anaconda/pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1
......
Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate py39
#
# To deactivate an active environment, use
#
#     $ conda deactivate

使用

然后切换shell为bash,再运行conda activate py39,便切换到新创建的环境,查看安装的python版本为python 3.9.12

sh-4.2$ bash
(base) [admin@d20220630143618d35b74e10cea001390033-6975cd4898-9hqn9 jupyter]$ conda activate py39
(py39) [admin@d20220630143618d35b74e10cea001390033-6975cd4898-9hqn9 jupyter]$ python --version
Python 3.9.12
(py39) [admin@d20220630143618d35b74e10cea001390033-6975cd4898-9hqn9 jupyter]$ 

安装tensorflow,可以看到安装的版本为2.9.1,是比较新的版本

(py39) [admin@d20220630143618d35b74e10cea001390033-6975cd4898-9hqn9 jupyter]$ pip install tensorflow
Looking in indexes: https://mirrors.aliyun.com/pypi/simple
Collecting tensorflow
  Downloading https://mirrors.aliyun.com/pypi/packages/fd/0a/4772fb94cf9b4ad7553c253193afc2e7ea5403f7390976885e5066e3d518/tensorflow-2.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (511.7 MB)
     |▎                               | 4.9 MB 449 kB/s eta 0:18:49

然后可以继续安装其他需要的依赖包

安装到ipykernel

集成到ipykernel环境

(py39) [admin@d20220630143618d35b74e10cea001390033-6975cd4898-9hqn9 jupyter]$ pip install ipykernel

(py39) [admin@d20220630143618d35b74e10cea001390033-6975cd4898-9hqn9 jupyter]$ python -m ipykernel install --user
Installed kernelspec python3 in /home/admin/.local/share/jupyter/kernels/python3

新建notebook,查看python版本为3.9,版本已切换
2022-06-30-14-57-59.png

目录
相关文章
|
26天前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
32 10
|
27天前
|
Shell Linux Ruby
Python3虚拟环境venv
`venv` 是 Python 的虚拟环境工具,用于为不同项目创建独立的运行环境,避免依赖冲突。通过 `python3 -m venv` 命令创建虚拟环境,并使用 `source bin/activate` 激活。激活后,所有 Python 包将安装在该环境中,不影响系统全局环境。退出环境使用 `deactivate` 命令。每个虚拟环境拥有独立的包集合,确保项目间的隔离性。删除虚拟环境只需删除其目录即可。
86 34
|
28天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
106 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
1月前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
53 1
|
1月前
|
人工智能 Python
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
56 7
|
1月前
|
Shell 程序员 开发者
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
110 2
|
1月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
41 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
1月前
|
Python
探索Python虚拟环境:virtualenv、venv与pipenv比较
在Python开发中,有效的环境管理至关重要。virtualenv、venv和pipenv是常用的虚拟环境管理工具。virtualenv支持Python 2.7+和3.3+,可创建独立环境;venv为Python 3.3+内置库,简单轻量但功能有限;pipenv则结合了包管理和虚拟环境管理,生成Pipfile.lock确保依赖确定性和安全性,推荐作为首选工具。
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
52 14

热门文章

最新文章

推荐镜像

更多