Python爬虫系列10-交易所股票、基金的数据采集与分析

简介: 当大家经历的事情多了,慢慢的遇到事情,就不会急躁,也不会消极负能量,而是很冷静地面对,然后鼓励自己,只要努力,一定可以越来越好,不要自己给自己压力。人生短短几十年,不要给自己留下了什么遗憾,想笑就笑,想哭就哭,该爱的时候就去爱,无谓压抑自己。学习如逆水行舟不进则退。

实战

第一步:确定要采集的目标,请求数据

今天我们要采集的网站关于基金股票一类的。
链接奉上:http://www.sse.com.cn/

image.png

image.png

今天我们要抓取的就是展示该图像的背后数据,Go 搞起。大家记得关注呀👍👍将持续更新。😁

import requests

url = 'http://yunhq.sse.com.cn:32041//v1/sh1/line/000001?begin=0&end=-1&select=time%2Cprice%2Cvolume&_=1635851354208'

# 请求网页
json_str = requests.get(url, headers={'Referer': 'http://www.sse.com.cn/market/price/trends/'}).text
   
print(json_str)
    

image.png

第二步:解析数据

import json

# 转换
data = json.loads(json_str)

print(data['line'])

image.png

第三步:保存数据

保存数据可以参照我前面写的爬虫博客;
有openpyxl、xlwt、pandas等excel保存方式;
也有讲txt、doc文档等保存方式。
如果不想保存数据,大家可以直接通过matplotlib、seaborn、pyecharts等绘制数据分析可视化图像。
image.png

image.png

在这个浮躁的时代;竟然还有人能坚持篇篇原创;

如果本文对你学习有所帮助-可以点赞👍+ 关注!将持续更新更多新的文章。

支持原创。感谢!

相关文章
|
18天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
111 70
|
20天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
20天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
124 68
|
16天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
93 36
|
10天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
57 15
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
72 18
|
18天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
23天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
33 0
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
75 0
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
46 2