用户指南—数据导入和导出—使用程序进行数据导入

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 本文将介绍如何通过编写代码的方式,将导入数据到PolarDB-X中。

假设有一操作表:


CREATE TABLE `test1` (
    `id` int(11) NOT NULL,
    `k` int(11) NOT NULL DEFAULT '0',
    `c` char(120) NOT NULL DEFAULT '',
    `pad` char(60) NOT NULL DEFAULT '',
    PRIMARY KEY (`id`),
    KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

从数据库中导出源数据

源数据可以用户自行生成,也可以从数据库中导出,在数据库中导出可通过mysql -e命令的方式,PolarDB-X和MySQL都支持该方式,具体方法如下:


mysql -h ip  -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM test1;" >/home/data_1000w.txt

## 原始数据以制表符分隔,数据格式:188092293 27267211 59775766593-64673028018-...-09474402685 01705051424-...-54211554755
mysql -h ip -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM test1;" | sed 's/\t/,/g' >/home/data_1000w.csv
## csv文件格式以逗号分隔,数据格式:188092293,27267211,59775766593-64673028018-...-09474402685,01705051424-...-54211554755

推荐对字符串进行处理,转变成csv文件格式,方便后续程序读取数据。

在PolarDB-X中创建目标表

源数据不包括建表语句,所以需要手动在PolarDB-X目标数据库上创建表,关于PolarDB-X建表语句的语法请参见CREATE TABLE语句,例如:


CREATE TABLE `test1` (
`id` int(11) NOT NULL,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

使用程序导入数据到PolarDB-X

您可以自行编写程序,连接PolarDB-X,然后读取本地数据,通过Batch Insert语句导入PolarDB-X中。

下面是一个简单的JAVA程序示例:


// 需要mysql-connector-java.jar, 详情界面:https://mvnrepository.com/artifact/mysql/mysql-connector-java
// 下载链接:https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.20/mysql-connector-java-8.0.20.jar
// 注:不同版本的mysql-connector-java.jar,可能Class.forName("com.mysql.cj.jdbc.Driver")类路径不同
// 编译 javac LoadData.java
// 运行 java -cp .:mysql-connector-java-8.0.20.jar LoadData
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
public class LoadData {
public static void main(String[] args) throws IOException, ClassNotFoundException, SQLException {
File dataFile = new File("/home/data_1000w.csv");
String sql = "insert into test1(id, k, c, pad) values(?, ?, ?, ?)";
int batchSize = 1000;
try (
Connection connection = getConnection("ip", 3306, "db", "usr", "password");
BufferedReader br = new BufferedReader(new FileReader(dataFile))) {
String line;
PreparedStatement st = connection.prepareStatement(sql);
long startTime = System.currentTimeMillis();
int batchCount = 0;
while ((line = br.readLine()) != null) {
String[] data = line.split(",");
st.setInt(1, Integer.valueOf(data[0]));
st.setInt(2, Integer.valueOf(data[1]));
st.setObject(3, data[2]);
st.setObject(4, data[3]);
st.addBatch();
if (++batchCount % batchSize == 0) {
st.executeBatch();
System.out.println(String.format("insert %d records", batchCount));
}
}
if (batchCount % batchSize != 0) {
st.executeBatch();
}
long cost = System.currentTimeMillis() - startTime;
System.out.println(String.format("Take %d second,insert %d records, tps %d", cost/1000, batchCount, batchCount/(cost/1000)));
}
}
/**
* 获取数据库连接
*
* @param host 数据库地址
* @param port 端口
* @param database 数据库名称
* @param username 用户名
* @param password 密码
* @return
* @throws ClassNotFoundException
* @throws SQLException
*/
private static Connection getConnection(String host, int port, String database, String username, String password)
throws ClassNotFoundException, SQLException {
Class.forName("com.mysql.cj.jdbc.Driver");
String url = String.format(
"jdbc:mysql://%s:%d/%s?autoReconnect=true&socketTimeout=600000&rewriteBatchedStatements=true", host, port,
database);
Connection con = DriverManager.getConnection(url, username, password);
return con;
}
}

您可以根据实际应用场景编写程序,设置合适的batch size和多线程导入,能够加快性能。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
SQL Oracle Cloud Native
|
SQL 算法 关系型数据库
|
SQL 运维 关系型数据库
|
canal 关系型数据库 MySQL
【笔记】用户指南—数据导入和导出—使用DTS导入和导出数据
PolarDB-X提供丰富的数据导入和导出方式,以保持与其他数据系统的互通。本文主要介绍通过DTS导入导出数据的方式。
193 0
|
SQL 关系型数据库 MySQL
【笔记】用户指南—数据导入和导出—使用mysqldump导入导出数据
本文介绍了通过mysqldump工具将PolarDB-X数据导入导出的几种常见场景和详细操作步骤。 PolarDB-X支持MySQL官方数据导出工具mysqldump。mysqldump命令的详细说明请参见MySQL 官方文档。
248 0
|
SQL 关系型数据库 MySQL
【笔记】用户指南—数据导入和导出—使用程序进行数据导入
本文将介绍如何通过编写代码的方式,将导入数据到PolarDB-X中。
151 0
|
canal 关系型数据库 MySQL
用户指南—数据导入和导出—使用DTS导入和导出数据
用户指南—数据导入和导出—使用DTS导入和导出数据
263 0
|
SQL 关系型数据库 MySQL
用户指南—数据导入和导出—使用mysqldump导入导出数据
本文介绍了通过mysqldump工具将PolarDB-X数据导入导出的几种常见场景和详细操作步骤。 PolarDB-X支持MySQL官方数据导出工具mysqldump。mysqldump命令的详细说明请参见MySQL 官方文档。
149 0
|
关系型数据库 MySQL Java
用户指南—数据导入和导出—使用程序进行数据导入
本文将介绍如何通过编写代码的方式,将导入数据到PolarDB-X中。
215 0
|
8天前
|
调度 云计算 芯片
云超算技术跃进,阿里云牵头制定我国首个云超算国家标准
近日,由阿里云联合中国电子技术标准化研究院主导制定的首个云超算国家标准已完成报批,不久后将正式批准发布。标准规定了云超算服务涉及的云计算基础资源、资源管理、运行和调度等方面的技术要求,为云超算服务产品的设计、实现、应用和选型提供指导,为云超算在HPC应用和用户的大范围采用奠定了基础。
179587 21

热门文章

最新文章