用户指南—数据导入和导出—使用程序进行数据导入

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 本文将介绍如何通过编写代码的方式,将导入数据到PolarDB-X中。

假设有一操作表:


CREATE TABLE `test1` (
    `id` int(11) NOT NULL,
    `k` int(11) NOT NULL DEFAULT '0',
    `c` char(120) NOT NULL DEFAULT '',
    `pad` char(60) NOT NULL DEFAULT '',
    PRIMARY KEY (`id`),
    KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

从数据库中导出源数据

源数据可以用户自行生成,也可以从数据库中导出,在数据库中导出可通过mysql -e命令的方式,PolarDB-X和MySQL都支持该方式,具体方法如下:


mysql -h ip  -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM test1;" >/home/data_1000w.txt

## 原始数据以制表符分隔,数据格式:188092293 27267211 59775766593-64673028018-...-09474402685 01705051424-...-54211554755
mysql -h ip -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM test1;" | sed 's/\t/,/g' >/home/data_1000w.csv
## csv文件格式以逗号分隔,数据格式:188092293,27267211,59775766593-64673028018-...-09474402685,01705051424-...-54211554755

推荐对字符串进行处理,转变成csv文件格式,方便后续程序读取数据。

在PolarDB-X中创建目标表

源数据不包括建表语句,所以需要手动在PolarDB-X目标数据库上创建表,关于PolarDB-X建表语句的语法请参见CREATE TABLE语句,例如:


CREATE TABLE `test1` (
`id` int(11) NOT NULL,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

使用程序导入数据到PolarDB-X

您可以自行编写程序,连接PolarDB-X,然后读取本地数据,通过Batch Insert语句导入PolarDB-X中。

下面是一个简单的JAVA程序示例:


// 需要mysql-connector-java.jar, 详情界面:https://mvnrepository.com/artifact/mysql/mysql-connector-java
// 下载链接:https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.20/mysql-connector-java-8.0.20.jar
// 注:不同版本的mysql-connector-java.jar,可能Class.forName("com.mysql.cj.jdbc.Driver")类路径不同
// 编译 javac LoadData.java
// 运行 java -cp .:mysql-connector-java-8.0.20.jar LoadData
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
public class LoadData {
public static void main(String[] args) throws IOException, ClassNotFoundException, SQLException {
File dataFile = new File("/home/data_1000w.csv");
String sql = "insert into test1(id, k, c, pad) values(?, ?, ?, ?)";
int batchSize = 1000;
try (
Connection connection = getConnection("ip", 3306, "db", "usr", "password");
BufferedReader br = new BufferedReader(new FileReader(dataFile))) {
String line;
PreparedStatement st = connection.prepareStatement(sql);
long startTime = System.currentTimeMillis();
int batchCount = 0;
while ((line = br.readLine()) != null) {
String[] data = line.split(",");
st.setInt(1, Integer.valueOf(data[0]));
st.setInt(2, Integer.valueOf(data[1]));
st.setObject(3, data[2]);
st.setObject(4, data[3]);
st.addBatch();
if (++batchCount % batchSize == 0) {
st.executeBatch();
System.out.println(String.format("insert %d records", batchCount));
}
}
if (batchCount % batchSize != 0) {
st.executeBatch();
}
long cost = System.currentTimeMillis() - startTime;
System.out.println(String.format("Take %d second,insert %d records, tps %d", cost/1000, batchCount, batchCount/(cost/1000)));
}
}
/**
* 获取数据库连接
*
* @param host 数据库地址
* @param port 端口
* @param database 数据库名称
* @param username 用户名
* @param password 密码
* @return
* @throws ClassNotFoundException
* @throws SQLException
*/
private static Connection getConnection(String host, int port, String database, String username, String password)
throws ClassNotFoundException, SQLException {
Class.forName("com.mysql.cj.jdbc.Driver");
String url = String.format(
"jdbc:mysql://%s:%d/%s?autoReconnect=true&socketTimeout=600000&rewriteBatchedStatements=true", host, port,
database);
Connection con = DriverManager.getConnection(url, username, password);
return con;
}
}

您可以根据实际应用场景编写程序,设置合适的batch size和多线程导入,能够加快性能。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
机器学习/深度学习 数据采集 人工智能
掌握随机森林:基于决策树的集成模型
掌握随机森林:基于决策树的集成模型
215 0
|
负载均衡 应用服务中间件 API
微服务技术系列教程(25) - SpringCloud- 接口网关服务Zuul
微服务技术系列教程(25) - SpringCloud- 接口网关服务Zuul
228 0
|
7月前
|
存储 Linux 网络安全
手把手教你在天翼云部署一台FortiGate云主机
手把手教你在天翼云部署一台FortiGate云主机
|
5月前
|
存储 人工智能 关系型数据库
MySQL 8.0 字符集与比较规则介绍
我们都知道 MySQL 8.0 与 MySQL 5.7 的区别之一就是默认字符集从 latin1 改成了 utf8mb4 ,除此之外,MySQL 8.0 下的字符集和比较规则还有没有其他变化呢?本篇文章我们一起来学习下。
349 1
|
5月前
|
弹性计算 运维 监控
阿里云操作系统智能助手OS Copilot评测报告
**摘要:** 计算机学生试用阿里云OS Copilot,认为其对编程和命令执行辅助强大,帮助评分9分,但新手上手有一定难度。期待开源并参与开发,希望增加可视化界面及更多系统支持,优化新手体验。已体验知识问答、辅助编程和命令执行,尤喜后者,与百度文心快码相比,OS Copilot操作复杂些。期望功能扩展包括多操作系统支持、错误分析及更多集成场景,如与ACK、ECS配合。
158 1
|
SQL 算法 关系型数据库
|
SQL 运维 关系型数据库
|
SQL Oracle Cloud Native
|
7月前
|
人工智能 对象存储 异构计算
AI模型推理服务在Knative中最佳配置实践
Knative和AI结合提供了快速部署、高弹性和低成本的技术优势,对于一些需要频繁变动计算资源的AI应用,如模型推理等尤其明显。那么在Knative上部署AI模型推理时可以遵循这些最佳实践,以提升AI推理服务能力和GPU资源利用率。
|
6月前
|
机器学习/深度学习 存储 人工智能
基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能(1)
基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能