实战案例|K折交叉验证与GridSearch网格搜索

简介: 大家好,我是志斌~今天跟大家分享一下如何用GridSearch网格搜索和K折交叉认证对决策树模型进行参数调优。

大家好,我是志斌~


今天跟大家分享一下如何用GridSearch网格搜索和K折交叉认证对决策树模型进行参数调优。


上一篇文章给大家介绍了决策树模型的搭建和实战,当时只用到了一个参数max_depth,但是模型实际上还有其他影响参数,如criterion(特征选择标准)、class_weight(类别权重)等参数。如果我们想要更精确的结果,那么势必要对模型参数进行调整,找到最优参数,来构建模型。


01K折交叉验证


K折交叉验证实际上是将一个数据集分成K份,每次选K-1份为训练集,用剩下的一份为测试集,然后取K个模型的平均测试结果作为最终的模型效果。如下图所示:


74.png


K值的选取跟数据集的大小有关,数据集较小则增大K值,数据集较大则减小K值。实现代码如下:


from sklearn.model_selection import cross_val_score
acc = cross_val_score(model,X,Y,cv=5)


02GridSearch网格搜索


GridSearch网格搜索是一种穷举搜索的参数调优方法,它会遍历所有的候选参数,并评估每个模型的有效性和准确性,选取最好的参数作为最终结果。


参数调优分为单参数调优和多参数调优,志斌分别给大家举例介绍一下。


01 单参数调优


我们以单参数max_depth参数为例,来演示单参数调优,代码如下:


from sklearn.model_selection import GridSearchCV
param = {'max_depth':[1,3,5,7,9]}
grid_search = GridSearchCV(model,param,scoring='roc_auc',cv=5)grid_search.fit(X_train,Y_train)


输出参数的最优结果:


grid_search.best_params_


得到max_depth参数的最优结果为:


75.png


我们用上面获得的参数最优值重新搭建模型,来查看AUC值是否得到了提高,代码如下:


model = DecisionTreeClassifier(max_depth=7)
model.fit(X_train,Y_train)
y_pred_proba = model.predict_proba(X_test)
from sklearn.metrics import roc_auc_score
score = roc_auc_score(Y_test.values,y_pred_proba[:,1])


得到的AUC值为:


76.png

76.png


比之前的0.958有所上升,看来模型的准确度有所上升。


02

多参数调优


决策树模型有下图这些参数:


77.png


这些参数都会影响我们搭建的决策树模型的准确性,这里我们以max_depth(最大深度)、criterion(特征选择标准)、min_samples_split(子节点向下分裂所需最小样本数),这三个参数为例,来进行多参数调优,代码如下:


from sklearn.model_selection import GridSearchCV
params = {'max_depth':[5,7,9,11,13],'criterion':['gini','entropy'],'min_samples_split':[5,7,9,11,13,15]}
model = DecisionTreeClassifier()
grid_search = GridSearchCV(model,params,scoring='roc_auc',cv=5)
grid_search.fit(X_train,Y_train)


输出参数的最优值:


grid_search.best_params_



78.png

我们用上面获得的参数最优值重新搭建模型,来查看AUC值是否得到了提高,代码如下:


model = DecisionTreeClassifier(criterion='entropy',max_depth=13,min_samples_split=15)
model.fit(X_train,Y_train)
y_pred_proba = model.predict_proba(X_test)
from sklearn.metrics import roc_auc_score
score = roc_auc_score(Y_test.values,y_pred_proba[:,1])


得到的AUC值为:


79.png


比之前的0.985有所提高,看来模型得到进一步优化。


03小结


1. 本文详细介绍了K交叉验证与GridSearch网格搜索,有兴趣的读者可以自己尝试一下。

2. 本文仅供学习,不做它用。

3. 点击在看,即可找志斌领取源码。

相关文章
|
10天前
|
机器学习/深度学习 算法
R语言超参数调优:深入探索网格搜索与随机搜索
【9月更文挑战第2天】网格搜索和随机搜索是R语言中常用的超参数调优方法。网格搜索通过系统地遍历超参数空间来寻找最优解,适用于超参数空间较小的情况;而随机搜索则通过随机采样超参数空间来寻找接近最优的解,适用于超参数空间较大或计算资源有限的情况。在实际应用中,可以根据具体情况选择适合的方法,并结合交叉验证等技术来进一步提高模型性能。
|
2月前
|
机器学习/深度学习 计算机视觉 Python
模型评估与选择:Sklearn中的交叉验证与网格搜索
【7月更文第23天】在机器学习项目中,模型的评估与选择是至关重要的步骤,它直接关系到模型的泛化能力和最终的应用效果。Scikit-learn(简称sklearn)作为Python中最受欢迎的机器学习库之一,提供了丰富的工具来进行模型调优和性能评估,其中交叉验证(Cross-Validation, CV)与网格搜索(Grid Search)是两个核心组件。本文将深入探讨这两项技术,并通过代码示例展示其在实践中的应用。
31 8
|
2月前
|
机器学习/深度学习 数据采集 算法
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
|
3月前
|
机器学习/深度学习 算法
机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略
【6月更文挑战第28天】**机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略。工具如scikit-optimize、Optuna助力优化,迁移学习和元学习提供起点,集成方法则通过多模型融合提升性能。资源与时间考虑至关重要,交叉验证和提前停止能有效防止过拟合。**
46 0
|
4月前
|
机器学习/深度学习
模型选择与调优:scikit-learn中的交叉验证与网格搜索
【4月更文挑战第17天】在机器学习中,模型选择和调优至关重要,scikit-learn提供了交叉验证和网格搜索工具。交叉验证(如k折、留一法和分层k折)用于评估模型性能和参数调优。网格搜索(如GridSearchCV和RandomizedSearchCV)遍历或随机选择参数组合以找到最优设置。通过实例展示了如何使用GridSearchCV对随机森林模型进行调优,强调了理解问题和数据的重要性。
|
4月前
|
机器学习/深度学习 Python
【Python 机器学习专栏】模型选择中的交叉验证与网格搜索
【4月更文挑战第30天】交叉验证和网格搜索是机器学习中优化模型的关键技术。交叉验证通过划分数据集进行多次评估,如K折和留一法,确保模型性能的稳定性。网格搜索遍历预定义参数组合,寻找最佳参数设置。两者结合能全面评估模型并避免过拟合。Python中可使用`sklearn`库实现这一过程,但需注意计算成本、过拟合风险及数据适应性。理解并熟练应用这些方法能提升模型性能和泛化能力。
216 0
|
4月前
|
并行计算 前端开发 数据可视化
R语言面板平滑转换回归(PSTR)分析案例实现
R语言面板平滑转换回归(PSTR)分析案例实现
|
4月前
|
机器学习/深度学习 算法 数据挖掘
survey和surveyCV:如何用R语言进行复杂抽样设计、权重计算和10折交叉验证?
survey和surveyCV:如何用R语言进行复杂抽样设计、权重计算和10折交叉验证?
184 1
|
4月前
|
机器学习/深度学习 Python
Scikit-Learn 中级教程——网格搜索和交叉验证
Scikit-Learn 中级教程——网格搜索和交叉验证
132 6
|
12月前
|
机器学习/深度学习 算法 API
机器学习交叉验证和网格搜索案例分析
机器学习交叉验证和网格搜索案例分析
110 0