Scikit-Learn 中级教程——网格搜索和交叉验证

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: Scikit-Learn 中级教程——网格搜索和交叉验证

Python Scikit-Learn 中级教程:网格搜索和交叉验证

在机器学习中,选择合适的模型超参数是提高模型性能的关键一步。Scikit-Learn 提供了网格搜索(Grid Search)和交叉验证(Cross-Validation)等工具,帮助我们找到最佳的超参数组合。本篇博客将深入介绍如何使用 Scikit-Learn 中的网格搜索和交叉验证来优化模型。

1. 网格搜索

网格搜索是一种通过遍历指定参数组合的方法,找到模型最佳超参数的技术。Scikit-Learn 中的 GridSearchCV 类提供了方便的网格搜索功能。

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# 加载示例数据集
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

# 定义模型
model = SVC()

# 定义参数网格
param_grid = {
   'C': [0.1, 1, 10, 100], 'kernel': ['linear', 'rbf'], 'gamma': [0.001, 0.01, 0.1, 1, 'scale', 'auto']}

# 创建 GridSearchCV 对象
grid_search = GridSearchCV(model, param_grid, cv=5)

# 在训练集上执行网格搜索
grid_search.fit(X_train, y_train)

# 输出最佳参数组合和对应的性能指标
print("最佳参数组合:", grid_search.best_params_)
print("最佳性能指标:", grid_search.best_score_)

2. 交叉验证

交叉验证是一种评估模型性能的方法,它将数据集划分为多个子集,每次使用其中一个子集作为测试集,其余子集作为训练集。Scikit-Learn 中的 cross_val_score 函数可以方便地进行交叉验证。

from sklearn.model_selection import cross_val_score

# 使用交叉验证评估模型性能
cv_scores = cross_val_score(model, X_train, y_train, cv=5)

# 输出交叉验证得分
print("交叉验证得分:", cv_scores)
print("平均交叉验证得分:", np.mean(cv_scores))

3. 结合网格搜索和交叉验证

将网格搜索和交叉验证结合起来,可以更全面地评估模型性能,并找到最佳超参数。

from sklearn.model_selection import GridSearchCV

# 定义参数网格
param_grid = {
   'C': [0.1, 1, 10, 100], 'kernel': ['linear', 'rbf'], 'gamma': [0.001, 0.01, 0.1, 1, 'scale', 'auto']}

# 创建 GridSearchCV 对象,设置交叉验证次数为5
grid_search_cv = GridSearchCV(model, param_grid, cv=5)

# 在训练集上执行网格搜索和交叉验证
grid_search_cv.fit(X_train, y_train)

# 输出最佳参数组合和对应的性能指标
print("最佳参数组合:", grid_search_cv.best_params_)
print("最佳性能指标:", grid_search_cv.best_score_)

4. 总结

网格搜索和交叉验证是优化机器学习模型的强大工具。通过使用 Scikit-Learn 提供的 GridSearchCV 和 cross_val_score,我们能够方便地找到最佳超参数组合,并更全面地评估模型性能。在实际应用中,建议使用这两个工具来提高模型的准确性和泛化能力。希望本篇博客对你理解和使用网格搜索和交叉验证有所帮助!

目录
相关文章
|
2月前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
2月前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
2月前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
2月前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
1月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
121 1
|
2月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
679 19
|
2月前
|
Web App开发 缓存 监控
微店店铺商品搜索(item_search_shop)接口深度分析及 Python 实现
item_search_shop接口用于获取特定店铺的全部商品数据,支持批量获取商品列表、基础信息、价格、销量等,适用于竞品监控、商品归类及店铺分析等场景,助力全面了解店铺经营状况。
|
2月前
|
JSON 缓存 供应链
电子元件 item_search - 按关键字搜索商品接口深度分析及 Python 实现
本文深入解析电子元件item_search接口的设计逻辑与Python实现,涵盖参数化筛选、技术指标匹配、供应链属性过滤及替代型号推荐等核心功能,助力高效精准的电子元器件搜索与采购决策。
|
2月前
|
缓存 自然语言处理 算法
item_search - Lazada 按关键字搜索商品接口深度分析及 Python 实现
Lazada的item_search接口是关键词搜索商品的核心工具,支持多语言、多站点,可获取商品价格、销量、评分等数据,适用于市场调研与竞品分析。

推荐镜像

更多