《Python数据可视化编程实战》—— 1.2 安装matplotlib、Numpy和Scipy库

简介:

本节书摘来异步社区《Python数据可视化编程实战》一书中的第1章,第1.2节,作者:【爱尔兰】Igor Milovanović,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.2 安装matplotlib、Numpy和Scipy库

Python数据可视化编程实战
本章介绍了matplotlib及其依赖的软件在Linux平台上的几种安装方法。

1.2.1 准备工作

这里假设你已经安装了Linux系统且安装好了Python(推荐使用Debian/Ubuntu或RedHat/SciLinux)。在前面提到的Linux系统发行版中,Python通常是默认安装的。如果没有,使用标准的软件安装方式安装Python也是非常简便的。本书假设你安装的Python版本为2.7或以上。

提示几乎所有的代码均可在Python 3.3及以上版本的环境下工作,但是因为大部分操作系统提供的Python版本仍然是2.7(甚至是2.6),本书代码基于Python 2.7版本。这种基于Python版本的区别并不大,主要是在软件包版本和部分代码上存在差别(在Python3.3以上版本,请使用range方法替换xrang方法)。
本书也假设你知道如何使用操作系统软件包管理工具进行软件包的安装,以及知道如何使用命令行终端。

构建matplotlib运行环境,需要满足相关软件依赖。

Matplotlib的构建过程依赖NumPy、libpng和freetype软件包。要从源代码构建matplotlib,必须先要安装好NumPy库。

提示NumPy库提供处理大数据集的数据结构和数学方法。诸如元组、列表或字典等Python的默认数据结构同样可以很好地支持数据的插入、删除和连接。NumPy的数据结构支持“矢量”操作,使用简便,同时具有很高的执行效率。矢量操作在实现时充分考虑了大数据的需要,基于C语言的实现方式也保证了执行效率。

基于NumPy构建的SciPy库,是Python的标准科学计算和数学计算工具包,包含了大量的专用函数和算法。而大部分函数和算法源自著名的Netlib软件仓库,实际上是使用C语言和Fortran语言实现的。
安装NumPy库的步骤如下。

1.安装Python-NumPy软件包。

$ sudo apt-get install python-numpy```
2.检查软件包版本。

$ python -c 'import numpy; print numpy.__version__'`
3.安装所需的库。

libpng 1.2:PNG文件处理(依赖zlib库)。```
freetype 1.4+:处理True type字体。
             $ sudo apt-get install build-dep python-matplotlib
如果使用RedHat或基于RedHat的Linux发行版(Fedora、SciLinux或Centos),可以使用yum工具进行安装,方法与apt-get工具类似。

$ su -c 'yum-builddep python-matplotlib'`

1.2.2 操作步骤

安装matplotlib及其依赖软件的方法有很多:从源代码安装,使用预编译完成的二进制文件安装,通过操作系统软件包管理工具安装,或安装内置了matplotlib的python预打包发布版本。

使用包管理工具大概是最简单的安装方式。例如在Ubuntu系统中,在命令行终端中输入下面的命令即可。

# in your terminal, type:
$ sudo apt-get install python-numpy python-matplotlib python-scipy```
如果读者期望使用最新特性,最好的选择是通过源代码进行安装。安装方式包含以下步骤:获取源代码、构建依赖库和参数配置、编译以及安装。

可以从代码托管站点www.github.com 下载最新代码进行安装,操作步骤如下。

$ cd ~/Downloads/
$ wget https://github.com/downloads/matplotlib/matplotlib/matplotlib-1.2. 0.tar.gz
$ tar xzf matplotlib-1.2.0.tar.gz
$ cd matplotlib-1.2.0
$ python setup.py build
$ sudo python setup.py install

####1.2.3 工作原理
从源代码安装matplotlib, 使用了标准的Python发布工具Distutils。安装过程需要提前安装依赖的软件包。关于使用标准的Linux包管理工具安装依赖软件的方法,可参考本节中关于准备工作的说明。

####1.2.4 补充说明
根据数据可视化项目的需要,可能有必要安装额外的可选软件包 。
相关文章
|
8月前
|
数据采集 数据处理 Python
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
117 0
|
6月前
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
188 9
|
6月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
250 8
|
7月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
7月前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
236 5
|
7月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
339 5
|
9月前
|
机器学习/深度学习 搜索推荐 数据可视化
Python量化炒股常用的Matplotlib包
Python量化炒股常用的Matplotlib包
152 7
|
8月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
402 3
|
8月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
84 0
|
9月前
|
API Python
30天拿下Python之matplotlib模块
30天拿下Python之matplotlib模块
79 0

推荐镜像

更多