《Python数据可视化编程实战》—— 1.2 安装matplotlib、Numpy和Scipy库

简介:

本节书摘来异步社区《Python数据可视化编程实战》一书中的第1章,第1.2节,作者:【爱尔兰】Igor Milovanović,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.2 安装matplotlib、Numpy和Scipy库

Python数据可视化编程实战
本章介绍了matplotlib及其依赖的软件在Linux平台上的几种安装方法。

1.2.1 准备工作

这里假设你已经安装了Linux系统且安装好了Python(推荐使用Debian/Ubuntu或RedHat/SciLinux)。在前面提到的Linux系统发行版中,Python通常是默认安装的。如果没有,使用标准的软件安装方式安装Python也是非常简便的。本书假设你安装的Python版本为2.7或以上。

提示几乎所有的代码均可在Python 3.3及以上版本的环境下工作,但是因为大部分操作系统提供的Python版本仍然是2.7(甚至是2.6),本书代码基于Python 2.7版本。这种基于Python版本的区别并不大,主要是在软件包版本和部分代码上存在差别(在Python3.3以上版本,请使用range方法替换xrang方法)。
本书也假设你知道如何使用操作系统软件包管理工具进行软件包的安装,以及知道如何使用命令行终端。

构建matplotlib运行环境,需要满足相关软件依赖。

Matplotlib的构建过程依赖NumPy、libpng和freetype软件包。要从源代码构建matplotlib,必须先要安装好NumPy库。

提示NumPy库提供处理大数据集的数据结构和数学方法。诸如元组、列表或字典等Python的默认数据结构同样可以很好地支持数据的插入、删除和连接。NumPy的数据结构支持“矢量”操作,使用简便,同时具有很高的执行效率。矢量操作在实现时充分考虑了大数据的需要,基于C语言的实现方式也保证了执行效率。

基于NumPy构建的SciPy库,是Python的标准科学计算和数学计算工具包,包含了大量的专用函数和算法。而大部分函数和算法源自著名的Netlib软件仓库,实际上是使用C语言和Fortran语言实现的。
安装NumPy库的步骤如下。

1.安装Python-NumPy软件包。

$ sudo apt-get install python-numpy```
2.检查软件包版本。

$ python -c 'import numpy; print numpy.__version__'`
3.安装所需的库。

libpng 1.2:PNG文件处理(依赖zlib库)。```
freetype 1.4+:处理True type字体。
             $ sudo apt-get install build-dep python-matplotlib
如果使用RedHat或基于RedHat的Linux发行版(Fedora、SciLinux或Centos),可以使用yum工具进行安装,方法与apt-get工具类似。

$ su -c 'yum-builddep python-matplotlib'`

1.2.2 操作步骤

安装matplotlib及其依赖软件的方法有很多:从源代码安装,使用预编译完成的二进制文件安装,通过操作系统软件包管理工具安装,或安装内置了matplotlib的python预打包发布版本。

使用包管理工具大概是最简单的安装方式。例如在Ubuntu系统中,在命令行终端中输入下面的命令即可。

# in your terminal, type:
$ sudo apt-get install python-numpy python-matplotlib python-scipy```
如果读者期望使用最新特性,最好的选择是通过源代码进行安装。安装方式包含以下步骤:获取源代码、构建依赖库和参数配置、编译以及安装。

可以从代码托管站点www.github.com 下载最新代码进行安装,操作步骤如下。

$ cd ~/Downloads/
$ wget https://github.com/downloads/matplotlib/matplotlib/matplotlib-1.2. 0.tar.gz
$ tar xzf matplotlib-1.2.0.tar.gz
$ cd matplotlib-1.2.0
$ python setup.py build
$ sudo python setup.py install

####1.2.3 工作原理
从源代码安装matplotlib, 使用了标准的Python发布工具Distutils。安装过程需要提前安装依赖的软件包。关于使用标准的Linux包管理工具安装依赖软件的方法,可参考本节中关于准备工作的说明。

####1.2.4 补充说明
根据数据可视化项目的需要,可能有必要安装额外的可选软件包 。
相关文章
|
3天前
|
JSON Shell 数据格式
使用 pipx 安装并执行 Python 应用程序 (1)
使用 pipx 安装并执行 Python 应用程序 (1)
41 17
|
22天前
|
IDE 测试技术 项目管理
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
197 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
|
29天前
|
人工智能 Java Python
python安装、vscode安装、conda安装:一文搞定Python的开发环境(史上最全)
尼恩架构团队推出了一系列《LLM大模型学习圣经》PDF,旨在帮助读者深入理解并掌握大型语言模型(LLM)及其相关技术。该系列包括Python基础、Transformer架构、LangChain框架、RAG架构及LLM智能体等内容,覆盖从理论到实践的各个方面。此外,尼恩还提供了配套视频教程,计划于2025年5月前发布,助力更多人成为大模型应用架构师,冲击年薪百万目标。
|
1月前
|
Shell Linux iOS开发
使用 pipx 安装并执行 Python 应用程序 (1)
使用 pipx 安装并执行 Python 应用程序 (1)
52 0
使用 pipx 安装并执行 Python 应用程序 (1)
|
1月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
41 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
2月前
|
Linux Python
Linux 安装python3.7.6
本教程介绍在Linux系统上安装Python 3.7.6的步骤。首先使用`yum`安装依赖环境,包括zlib、openssl等开发库。接着通过`wget`下载Python 3.7.6源码包并解压。创建目标文件夹`/usr/local/python3`后,进入解压目录执行配置、编译和安装命令。最后设置软链接,使`python3`和`pip3`命令生效。
|
3月前
|
存储 JSON 网络安全
使用 EFS 在 AWS Lambda 上安装 Python 依赖项
使用 aws lambda 时,开发人员面临的常见挑战之一是管理大型 python 依赖项。
49 1
|
3月前
|
IDE 开发工具 索引
在Python中安装第三方库
在Python中安装第三方库
1056 30
|
3月前
|
Ubuntu Linux iOS开发
安装Python
安装 Python 是相对简单的过程,但需要根据不同的操作系统选择合适的方法。同时,合理使用虚拟环境可以更好地管理项目的依赖和环境,提高开发效率。希望这些步骤和注意事项能帮助你顺利安装 Python。
|
3月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
44 1

热门文章

最新文章

推荐镜像

更多