《Python数据可视化编程实战》—— 1.2 安装matplotlib、Numpy和Scipy库

简介:

本节书摘来异步社区《Python数据可视化编程实战》一书中的第1章,第1.2节,作者:【爱尔兰】Igor Milovanović,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.2 安装matplotlib、Numpy和Scipy库

Python数据可视化编程实战
本章介绍了matplotlib及其依赖的软件在Linux平台上的几种安装方法。

1.2.1 准备工作

这里假设你已经安装了Linux系统且安装好了Python(推荐使用Debian/Ubuntu或RedHat/SciLinux)。在前面提到的Linux系统发行版中,Python通常是默认安装的。如果没有,使用标准的软件安装方式安装Python也是非常简便的。本书假设你安装的Python版本为2.7或以上。

提示几乎所有的代码均可在Python 3.3及以上版本的环境下工作,但是因为大部分操作系统提供的Python版本仍然是2.7(甚至是2.6),本书代码基于Python 2.7版本。这种基于Python版本的区别并不大,主要是在软件包版本和部分代码上存在差别(在Python3.3以上版本,请使用range方法替换xrang方法)。
本书也假设你知道如何使用操作系统软件包管理工具进行软件包的安装,以及知道如何使用命令行终端。

构建matplotlib运行环境,需要满足相关软件依赖。

Matplotlib的构建过程依赖NumPy、libpng和freetype软件包。要从源代码构建matplotlib,必须先要安装好NumPy库。

提示NumPy库提供处理大数据集的数据结构和数学方法。诸如元组、列表或字典等Python的默认数据结构同样可以很好地支持数据的插入、删除和连接。NumPy的数据结构支持“矢量”操作,使用简便,同时具有很高的执行效率。矢量操作在实现时充分考虑了大数据的需要,基于C语言的实现方式也保证了执行效率。

基于NumPy构建的SciPy库,是Python的标准科学计算和数学计算工具包,包含了大量的专用函数和算法。而大部分函数和算法源自著名的Netlib软件仓库,实际上是使用C语言和Fortran语言实现的。
安装NumPy库的步骤如下。

1.安装Python-NumPy软件包。

$ sudo apt-get install python-numpy```
2.检查软件包版本。

$ python -c 'import numpy; print numpy.__version__'`
3.安装所需的库。

libpng 1.2:PNG文件处理(依赖zlib库)。```
freetype 1.4+:处理True type字体。
             $ sudo apt-get install build-dep python-matplotlib
如果使用RedHat或基于RedHat的Linux发行版(Fedora、SciLinux或Centos),可以使用yum工具进行安装,方法与apt-get工具类似。

$ su -c 'yum-builddep python-matplotlib'`

1.2.2 操作步骤

安装matplotlib及其依赖软件的方法有很多:从源代码安装,使用预编译完成的二进制文件安装,通过操作系统软件包管理工具安装,或安装内置了matplotlib的python预打包发布版本。

使用包管理工具大概是最简单的安装方式。例如在Ubuntu系统中,在命令行终端中输入下面的命令即可。

# in your terminal, type:
$ sudo apt-get install python-numpy python-matplotlib python-scipy```
如果读者期望使用最新特性,最好的选择是通过源代码进行安装。安装方式包含以下步骤:获取源代码、构建依赖库和参数配置、编译以及安装。

可以从代码托管站点www.github.com 下载最新代码进行安装,操作步骤如下。

$ cd ~/Downloads/
$ wget https://github.com/downloads/matplotlib/matplotlib/matplotlib-1.2. 0.tar.gz
$ tar xzf matplotlib-1.2.0.tar.gz
$ cd matplotlib-1.2.0
$ python setup.py build
$ sudo python setup.py install

####1.2.3 工作原理
从源代码安装matplotlib, 使用了标准的Python发布工具Distutils。安装过程需要提前安装依赖的软件包。关于使用标准的Linux包管理工具安装依赖软件的方法,可参考本节中关于准备工作的说明。

####1.2.4 补充说明
根据数据可视化项目的需要,可能有必要安装额外的可选软件包 。
相关文章
|
3天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
37 19
|
3天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
11 2
|
6天前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
25 5
|
9天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
18 3
|
11天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
30 5
|
9天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
28 2
|
15天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
41 7
|
14天前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
18 5
|
15天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
26 4
|
16天前
|
数据可视化 数据挖掘 定位技术
Python中利用Bokeh创建动态数据可视化
【10月更文挑战第14天】本文介绍了如何使用 Bokeh 库在 Python 中创建动态数据可视化。Bokeh 是一个强大的开源可视化工具,支持交互式图表和大规模数据集的可视化。文章从安装 Bokeh 开始,逐步讲解了如何创建动态折线图,并添加了交互式控件如按钮、滑块和下拉菜单,以实现数据更新频率的调节和颜色选择。通过这些示例,读者可以掌握 Bokeh 的基本用法,进一步探索其丰富功能,创建更具吸引力和实用性的动态数据可视化。
23 0
下一篇
无影云桌面