《数字图像处理与机器视觉——Visual C++与Matlab实现》——0.2 数字图像处理与识别

本文涉及的产品
图像搜索,7款服务类型 1个月
简介:

本节书摘来自异步社区出版社《数字图像处理与机器视觉——Visual C++与Matlab实现》一书中的第0章,第0.2节,作者: 张铮 , 王艳平 , 薛桂香,更多章节内容可以访问云栖社区“异步社区”公众号查看。

0.2 数字图像处理与识别

数字图像处理与机器视觉——Visual C++与Matlab实现

0.2.1 从图像处理到图像识别

图像处理、图像分析和图像识别是认知学科与计算机学科中的一个令人兴奋的活跃分支。经历了1970年人们对其兴趣的爆炸性增长以来,这个领域到上世纪末逐渐步入成熟。其中,遥感、技术诊断、智能车自主导航、医学平面和立体成像、自动监视领域是发展最快的一些方向。这种进展最集中地体现则是市场上多种应用这类技术的产品的纷纷涌现。事实上,从数字图像处理到数字图像分析,再发展到最前沿的图像识别技术,其核心都是对数字图像中所包含信息的提取及与其相关的各种辅助过程。

1.数字图像处理
数字图像处理(Digital Image Processing)是指使用电子计算机对量化的数字图像进行处理,具体地说就是通过对图像进行各种加工来改善图像的外观,是对图像的修改和增强。

图像处理的输入是从传感器或其他来源获取的原始的数字图像,输出是经过处理后的输出图像。处理的目的可能是使输出图像具有更好的效果,以便于人的观察;也可能是为图像分析和识别做准备,此时的图像处理是作为一种预处理步骤,输出图像将进一步供其他图像分析、识别算法使用。

2.数字图像分析
数字图像分析(Digital Image Analyzing)是指对图像中感兴趣的目标进行检测和测量,以获得客观的信息。数字图像分析通常是指将一幅图像转化为另一种非图像的抽象形式,例如图像中某物体与测量者的距离,目标对象的计数或其尺寸等。这一概念的外延包括边缘检测和图像分割、特征提取以及几何测量与计数等。

图像分析的输入是经过处理的数字图像,其输出通常不再是数字图像,而是一系列与目标相关的图像特征(目标的描述),如目标的长度、颜色、曲率和个数等。

3.数字图像识别
数字图像识别(Digital Image Recognition)主要是研究图像中各目标的性质和相互关系,识别出目标对象的类别,从而理解图像的含义。它囊括了使用数字图像处理技术的很多应用项目,例如光学字符识别(OCR)、产品质量检验、人脸识别、自动驾驶、医学图像和地貌图像的自动判读理解等。

图像识别是图像分析的延伸,它根据图像分析中得到的相关描述(特征)对目标进行归类,输出我们感兴趣的目标类别标号信息(符号)。

总而言之,从图像处理到图像分析再到图像识别的过程,是一个将所含信息抽象化,尝试降低信息熵,提炼有效数据的过程,如图0.5所示。

image

从信息论的角度而言,图像应当是物体所含信息的一个概括,而数字图像处理侧重于将这些概括的信息进行变换,例如升高或降低熵值,数字图像分析则是将这些信息抽取出来以供其他过程调用。当然,在不太严格时,数字图像处理也可以兼指图像处理和分析。

读者或许也听过另一个概念——计算机图形学(Computer Graphics)。此概念与数字图像分析大致相反,它是一个对由概念或数学表述的物体图像进行处理和显示的过程。

0.2.2 什么是机器视觉

机器视觉(Machine Vision),又称计算机视觉(Computer Vision)。它是将数字图像处理和数字图像分析、图像识别结合起来,试图开发出一种能与人脑的部分机能比拟,能够理解自然景物和环境的系统,在机器人领域中为机器人提供类人视觉的功能。计算机视觉是数字成像领域的尖端方向,具有最综合的内容和最广泛的涵盖面。

icon-info提示:

后文中,如无特别说明,我们通常使用广义的图像处理概念,即用数字图像处理这个词涵盖上文所提到的图像处理和数字图像分析;而对图像识别和机器视觉的概念常常不加区分,尽管严格地说识别只对应于高级视觉的范畴。

0.2.3 数字图像处理和识别的应用实例

如今,数字图像处理与机器视觉的应用越来越广泛,已经渗透到国家安全、航空航天、工业控制、医疗保健等各个领域乃至日常生活和娱乐当中,在国民经济中发挥着举足轻重的作用。

一些典型的应用如表0.2所示。
image

本文仅用于学习和交流目的,不代表异步社区观点。非商业转载请注明作译者、出处,并保留本文的原始链接。

相关文章
|
7月前
|
Windows
Microsoft Visual C++2015-2019 安装失败 0x80240017
Microsoft Visual C++2015-2019 安装失败 0x80240017
211 0
|
5月前
|
编译器 开发工具 C++
【Python】已解决error: Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build
【Python】已解决error: Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build
3234 0
|
6月前
|
存储 分布式数据库 API
技术好文:VisualC++查看文件被哪个进程占用
技术好文:VisualC++查看文件被哪个进程占用
|
3月前
|
C++ 内存技术
[转]Visual C++内嵌swf文件并播放
[转]Visual C++内嵌swf文件并播放
|
4月前
|
安全 编译器 C++
Microsoft Visual C++ Redistributable的作用主要体现以及可以删除吗?
这些是Microsoft Visual C++不同版本的Redistributable安装包,用于32位系统,确保相关应用正常运行。它们提供C++运行时环境,简化部署流程,支持第三方库及框架,并确保应用兼容性。定期更新可修复问题并引入新功能。在空间有限或需解决程序冲突时可考虑删除,但需谨慎操作以防影响应用稳定性和兼容性。删除前请确认无应用依赖,并通过控制面板安全卸载。
262 1
Microsoft Visual C++ Redistributable的作用主要体现以及可以删除吗?
|
5月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
5月前
|
C++ Windows
FFmpeg开发笔记(三十九)给Visual Studio的C++工程集成FFmpeg
在Windows上使用Visual Studio 2022进行FFmpeg和SDL2集成开发,首先安装FFmpeg至E:\msys64\usr\local\ffmpeg,然后新建C++控制台项目。在项目属性中,添加FFmpeg和SDL2的头文件及库文件目录。接着配置链接器的附加依赖项,包括多个FFmpeg及SDL2的lib文件。在代码中引入FFmpeg的`av_log`函数输出"Hello World",编译并运行,若看到"Hello World",即表示集成成功。详细步骤可参考《FFmpeg开发实战:从零基础到短视频上线》。
244 0
FFmpeg开发笔记(三十九)给Visual Studio的C++工程集成FFmpeg
|
4月前
|
缓存 C++ Windows
Inno setup 脚本判断 Microsoft Visual C++ Redistributable 不同版本区别
Inno setup 脚本判断 Microsoft Visual C++ Redistributable 不同版本区别
|
4月前
|
编译器 C++ 开发者
Visual Studio属性表:在新项目中加入已配置好的C++库
通过以上步骤可以确保Visual Studio中新项目成功地加入了之前已配置好的C++库。这个过程帮助开发者有效地管理多个项目中共享的库文件,提升开发效率。
128 0