【Druid】(二)Apache Druid 原理与架构剖析1

简介: 【Druid】(二)Apache Druid 原理与架构剖析1

文章目录


一、基本架构


二、外部依赖


三、架构演进


四、Lambda 流式架构


一、基本架构



Druid 总体包含以下 5 类节点:


中间管理节点(middleManager node):及时摄入实时数据,已生成 Segment 数据文件。


MiddleManager 进程是执行提交的任务的工作节点。Middle Managers 将任务转发给在不同 JVM 中运行的 Peon进程(如此,可以做到资源和日志的隔离)。MiddleManager、Peon、Task 的对应关系是,每个 Peon 进程一次只能运行一个Task 任务,但一个 MiddleManager 却可以管理多个 Peon 进程。


历史节点(historical node):加载已生成好的数据文件,以供数据查询。historical 节点是整个集群查询性能的核心所在,因为 historical 会承担绝大部分的 segment 查询。


Historical 进程从 Deep Storage 中下载 Segment,并响应有关这些 Segment 的查询请求(这些请求来自Broker 进程)。另外,Historical 进程不处理写入请求 。

Historical 进程采用了无共享架构设计,它知道如何去加载和删除 Segment,以及如何基于 Segment 来响应查询。因此,即便底层的 Deep Storage无法正常工作,Historical 进程还是能针对其已同步的 Segments,正常提供查询服务


查询节点(broker node):接收客户端查询请求,并将这些查询转发给 Historicals 和 MiddleManagers。当 Brokers 从这些子查询中收到结果时,它们会合并这些结果并将它们返回给调用者。


协调节点(coordinator node):主要负责历史节点的数据负载均衡,以及通过规则(Rule) 管理数据的生命周期。协调节点告诉历史节点加载新数据、卸载过期数据、复制数据、 和为了负载均衡移动数据。


Coordinator 是周期性运行的(由 druid.coordinator.period 配置指定,默认执行间隔为 60s)。因为需要评估集群的当前状态,才能决定应用哪种策略,所以,Coordinator 需要维护和 ZooKeeper 的连接,以获取集群的信息。而关于 Segment 和 Rule 的信息保存在了元数据库中,所以也需要维护与元数据库的连接。


统治者(overlord node):进程监视 MiddleManager 进程,并且是数据摄入 Druid 的控制器。他们负责将提取任务分配给 MiddleManagers 并协调 Segement 发布,包括接受、拆解、分配 Task,以及创建 Task 相关的锁,并返回 Task 的状态。 大致流程如下:



除了上述五个节点之外,还有一个 Router 负责将请求路由到Broker, Coordinators和Overlords。


  • Router 进程可以在 Brokers、Overlords 和 Coordinators 进程之上,提供一层统一的 API网关。Router 进程本身是可选的,不过如果集群的数据规模已经达到了 TB级别,还是需要考虑启用的(druid.router.managementProxy.enabled=true)。因为一旦集群规模达到一定的数量级,那么发生故障的概率就会变得不容忽视,而 Router 支持将请求只发送给健康的节点,避免请求失败。同时,查询的响应时间和资源消耗,也会随着数据量的增长而变高,而 Router 支持设置查询的优先级和负载均衡策略,避免了大查询造成的队列堆积或查询热点等问题。


  • 另外,Router 节点还可用于将查询路由到不同的 Broker 节点,便于实现冷热分层,以更好地应对超大规模数据集。默认情况下,Router 会根据设置的 Rule 规则,来路由查询请求。例如,如果将最近 1 个月的数据加载到热集群中,则最近一个月内的查询可以路由到一组专用 Broker,超出该时间范围的查询将被路由到另一组 Broker,如此便实现了查询的冷热隔离。


Apache Druid Hot-Warm 如下图:



以上 所讲 Druid 的进程可以被任意部署,但是为了理解与部署组织方便。这些进程分为了三类:


  • Master: Coordinator, Overload 负责数据可用性和摄取
  • Query: Broker and Router,负责处理外部请求
  • Data: Historical and MiddleManager,负责实际的Ingestion负载和数据存储


二、外部依赖


同时,Druid 还包含 3 类外部依赖:


数据文件存储库(Deep Storage):存放生成的 Segment 数据文件,并供历史服务器下载, 对于单节点集群可以是本地磁盘,而对于分布式集群一般是 HDFS。


Druid 仅将 Deep Storage 用作数据的备份,并将其作为在 Druid 进程之间在后台传输数据的一种方式。当接受到查询请求,Historical 进程不会从 Deep Storage 读取数据,而是在响应任何查询之前,读取从本地磁盘 pre-fetched 的 Segments。这意味着 Druid 在查询期间永远不需要访问 Deep Storage,从而极大地降低了查询延迟。这也意味着,必须保证 Deep Storage 和 Historical 进程所在节点,能拥有足够的磁盘空间。


元数据库(Metadata Storage),存储 Druid 集群的元数据信息,比如 Segment 的相关信息,一 般用 MySQL 或 PostgreSQL。


image.png


Zookeeper:为 Druid 集群提供以执行协调服务。如内部服务的监控,协调和领导者选举。


涵盖了以下的几个主要特性:


Coordinator 节点的 Leader 选举

Historical 节点发布 Segment 的协议

Coordinator 和 Historical 之间 load / drop Segment 的协议

Overlord 节点的 Leader 选举

Overlord 和 MiddleManager 之间的 Task 管理


目录
相关文章
|
5天前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
8天前
|
存储 缓存 Java
JAVA并发编程系列(11)线程池底层原理架构剖析
本文详细解析了Java线程池的核心参数及其意义,包括核心线程数量(corePoolSize)、最大线程数量(maximumPoolSize)、线程空闲时间(keepAliveTime)、任务存储队列(workQueue)、线程工厂(threadFactory)及拒绝策略(handler)。此外,还介绍了四种常见的线程池:可缓存线程池(newCachedThreadPool)、定时调度线程池(newScheduledThreadPool)、单线程池(newSingleThreadExecutor)及固定长度线程池(newFixedThreadPool)。
|
1月前
|
存储 SQL Cloud Native
Hologres 的架构设计与工作原理
【9月更文第1天】随着大数据时代的到来,实时分析和处理数据的需求日益增长。传统的数据仓库在处理大规模实时数据分析时逐渐显露出性能瓶颈。为了解决这些问题,阿里巴巴集团研发了一款名为 Hologres 的新型云原生交互式分析数据库。Hologres 能够支持 SQL 查询,并且能够实现实时的数据写入和查询,这使得它成为处理大规模实时数据的理想选择。
46 2
|
2月前
|
存储 分布式计算 Hadoop
ChunkServer 原理与架构详解
【8月更文第30天】在分布式文件系统中,ChunkServer 是一个重要的组件,负责存储文件系统中的数据块(chunks)。ChunkServer 的设计和实现对于确保数据的高可用性、一致性和持久性至关重要。本文将深入探讨 ChunkServer 的核心原理和内部架构设计,并通过代码示例来说明其实现细节。
33 1
|
2月前
|
数据采集 存储 Java
Flume Agent 的内部原理分析:深入探讨 Flume 的架构与实现机制
【8月更文挑战第24天】Apache Flume是一款专为大规模日志数据的收集、聚合及传输而设计的分布式、可靠且高可用系统。本文深入解析Flume Agent的核心机制并提供实际配置与使用示例。Flume Agent由三大组件构成:Source(数据源)、Channel(数据缓存)与Sink(数据目的地)。工作流程包括数据采集、暂存及传输。通过示例配置文件和Java代码片段展示了如何设置这些组件以实现日志数据的有效管理。Flume的强大功能与灵活性使其成为大数据处理及实时数据分析领域的优选工具。
63 1
|
2月前
|
消息中间件 存储 SQL
Kafka架构及其原理
Kafka架构及其原理
76 1
|
3月前
|
NoSQL Redis
Redis 主从复制架构配置及原理
Redis 主从复制架构配置及原理
51 5
|
2月前
|
存储 缓存 Java
Eureka原理与实践:深入探索微服务架构的核心组件
在微服务架构日益盛行的今天,服务之间的注册与发现成为了保证系统高可用性和灵活性的关键。Eureka,作为Netflix开源的服务注册与发现框架,凭借其简单、健壮的特性,在微服务领域占据了举足轻重的地位。本文将深入剖析Eureka的原理,并通过实践案例展示其在实际项目中的应用,以期为开发者提供一个高端、深入的视角。
|
2月前
|
消息中间件 缓存 Kafka
图解Kafka:架构设计、消息可靠、数据持久、高性能背后的底层原理
【8月更文挑战第15天】在构建高吞吐量和高可靠性的消息系统时,Apache Kafka 成为了众多开发者和企业的首选。其独特的架构设计、消息可靠传输机制、数据持久化策略以及高性能实现方式,使得 Kafka 能够在分布式系统中大放异彩。本文将通过图解的方式,深入解析 Kafka 的这些核心特性,帮助读者更好地理解和应用这一强大的消息中间件。
96 0
|
3月前
|
存储 算法 缓存
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么

推荐镜像

更多