《Python编程:从入门到实践》学习记录(15)项目-数据可视化 matplotlib, pygal

简介: 《Python编程:从入门到实践》学习记录(15)项目-数据可视化 matplotlib, pygal
  • 安装可视化工具matplotlib
  • 一个数学会图库,可以绘制简单的图标,折线图,散点图。
  • 检查是否安装了matplotlib


image.png

安装matplotlib,必须使用pip3

  • pip3 install --user matplotlib


image.png

image.png



# 绘制折线图

import matplotlib.pyplot as plt
# X轴对应的数据
x_value_list = [1, 2, 3, 4, 5]
# Y轴对应的数据
squares = [1, 4, 9, 16, 25]
plt.plot(x_value_list, squares, linewidth=5)
# 设置图标的标题,并给坐标轴加上标签
plt.title("Square", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14)
plt.show()



image.png

# 绘制散点图


  • 在指定的xy坐标绘制一个点: scatter(x,y)

import matplotlib.pyplot as plt
x_list = list(range(101))
y_list = [x ** 2 for x in x_list]
plt.scatter(x_list, y_list, c='red', edgecolors='green', s=10)
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
plt.tick_params(axis='both', which='major', labelsize=14)
# 横纵坐标的范围
plt.axis([0, 100, 0, 11000])
# 展示图片
# plt.show()
# 保存图片到文件
plt.savefig('s.png', bbox_inches='tight')


image.png



# 模拟随机漫步(散点图)


  • 生成随机x,y坐标点位 random_walk.py

from random import choice
class RandomWalk:
    def __init__(self, num_points=5000):
        self.num_points = num_points
        self.x_values = [0]
        self.y_values = [0]
    def fill_walk(self):
        while len(self.x_values) < self.num_points:
            x_direction = choice([1, -1])
            x_distance = choice([0, 1, 2, 3, 4])
            x_step = x_direction * x_distance
            y_direction = choice([1, -1])
            y_distance = choice([0, 1, 2, 3, 4])
            y_step = y_direction * y_distance
            if x_step == 0 and y_step == 0:
                continue
            next_x = self.x_values[-1] + x_step
            next_y = self.y_values[-1] + y_step
            self.x_values.append(next_x)
            self.y_values.append(next_y)
  • 根据生成的随机点位绘图 rw_visual.py

import matplotlib.pyplot as plt
from data_show.walk.random_walk import RandomWalk
while True:
    rw = RandomWalk()
    rw.fill_walk()
    plt.scatter(rw.x_values, rw.y_values, s=15)
    plt.show()
    con_str = input("continue(y/n)?\n")
    if con_str == 'y':
        continue
    else:
        break


  • 结果


image.png

# 使用Pygal绘制矢量图



  • 安装 pip install --user pygal==1.7


image.png


  • 需求描述:掷一个点数为1-6的六面骰子,掷1000次,统计每个点数出现的次数,并将统计结果绘制成柱状svg图

from random import randint
import pygal
class Die:
    """骰子"""
    def __init__(self, num_sides=6):
        """
        初始化方法
        :param num_sides: 骰子的面数
        """
        self.num_sides = num_sides
    def roll(self):
        """
        掷骰子,Return random integer in range [a, b], including both end points.
        :return:
        """
        return randint(1, self.num_sides)
def draw(data_dict: dict):
    """
    绘图
    :param data_dict: 
    :return:
    """
    hist = pygal.Bar()
    hist.title = "投掷1000次6面筛子的结果统计"
    hist.x_labels = data_dict.keys()
    hist.x_title = "点数"
    hist.y_title = "点数对应的次数"
    hist.add('6面骰子', data_dict.values())
    # 导出问文件,扩展名必须为`.svg`
    hist.render_to_file('die_visual.svg')
die = Die()
result_list = []
# 掷骰子并保存结果
for i in range(1000):
    result_list.append(die.roll())
# 点数:出现次数
point_count_dict = {}
# 分析每个点数出现的次数
for i in range(1, die.num_sides + 1):
    point_count_dict[i] = result_list.count(i)
# 绘图
draw(point_count_dict)


  • 结果:(使用浏览器打开svg文件)
  • 各个点数出现的概率基本随机且相近


image.png

  • 需求:同时投掷两个6面骰子,统计两个骰子的结果之和

from random import randint
import pygal
class Die:
    """骰子"""
    def __init__(self, num_sides=6):
        """
        初始化方法
        :param num_sides: 骰子的面数
        """
        self.num_sides = num_sides
    def roll(self):
        """
        掷骰子,Return random integer in range [a, b], including both end points.
        :return:
        """
        return randint(1, self.num_sides)
def draw(data_dict: dict):
    """
    绘图
    :param data_dict:
    :return:
    """
    hist = pygal.Bar()
    hist.title = "投掷两个1000次6面筛子的结果统计"
    hist.x_labels = data_dict.keys()
    hist.x_title = "两个骰子的点数之和"
    hist.y_title = "点数对应的次数"
    hist.add('两个6面骰子', data_dict.values())
    # 导出问文件,扩展名必须为`.svg`
    hist.render_to_file('die_visual.svg')
die1 = Die()
die2 = Die()
result_list = []
# 掷骰子并保存结果
for i in range(1000):
    result_list.append(die1.roll() + die2.roll())
# 点数:出现次数
point_count_dict = {}
# 分析每个点数出现的次数
for i in range(2, 2 * die1.num_sides + 1):
    point_count_dict[i] = result_list.count(i)
# 绘图
draw(point_count_dict)


  • 结果
  • 出现点数之和为7的概率永远是最高的,因为7的组合方式最多~


image.png

相关文章
|
9天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
15天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
15天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
15天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
2天前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。
|
6天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
9天前
|
存储 人工智能 数据挖掘
Python编程入门:打造你的第一个程序
本文旨在为初学者提供Python编程的初步指导,通过介绍Python语言的基础概念、开发环境的搭建以及一个简单的代码示例,帮助读者快速入门。文章将引导你理解编程思维,学会如何编写、运行和调试Python代码,从而开启编程之旅。
34 2
|
10天前
|
存储 Python
Python编程入门:理解基础语法与编写简单程序
本文旨在为初学者提供一个关于如何开始使用Python编程语言的指南。我们将从安装Python环境开始,逐步介绍变量、数据类型、控制结构、函数和模块等基本概念。通过实例演示和练习,读者将学会如何编写简单的Python程序,并了解如何解决常见的编程问题。文章最后将提供一些资源,以供进一步学习和实践。
22 1
|
13天前
|
存储 网络协议 IDE
从零起步学习Python编程
从零起步学习Python编程
|
11天前
|
机器学习/深度学习 存储 数据挖掘
Python 编程入门:理解变量、数据类型和基本运算
【10月更文挑战第43天】在编程的海洋中,Python是一艘易于驾驭的小船。本文将带你启航,探索Python编程的基础:变量的声明与使用、丰富的数据类型以及如何通过基本运算符来操作它们。我们将从浅显易懂的例子出发,逐步深入到代码示例,确保即使是零基础的读者也能跟上步伐。准备好了吗?让我们开始吧!
23 0