目标检测技术研究现状及发展趋势

简介: 随着人工智能、深度学习技术的快速发展,受到深度学习在自然场景图像目标检测中的成功应用的影响,许多学者尝试将深度学习方法应用于图像的目标检测中,基于卷积神经网络的目标检测成为发展趋势。

     随着计算机设备的不断升级以及大规模数据集的建立,计算机视觉与深度学习技术得到快速发展,对图片视频数据的处理速度得到大幅提升。计算机设备通过接收图像数据,并利用深度学习算法,从而拥有了感知图像内容的能力。目前,通过将深度学习技术与计算机视觉技术相结合,产生了一系列变革与新应用,其中目标检测、识别技术成为了众多应用的关键技术之一。

      目标检测识别主要是对图片中的物品进行类别判断与定位。目标检测的发展如图 1 所示。传统的目标识别包括函数式判别方法,通过一组函数来描述计算过程,使得计算机在给定了输入数据后能够快速判别物品类型,然而在很多应用下,输入与输出之间对应的映射关系很难被发现,传统方法无法解决这种复杂的映射关系。因此,研究人员开始采用机器学习算法来计算输入输出的映射关系,增强了智能处理的能力,然而直接使用机械学习的算法在训练图像数据中,图像识别的正确度达不到预想的效果。针对此问题,研究人员采用特征提取算法,将图像对应的像素空间进行映射为特征空间,从而用特征向量对图像进行更本质的描述。

4[5F$I6D22WVD}]5}]`639M.png

    2012 年深度学习首次实现监督式训练深度卷积神经网络,Geoffrey Hinton 的研究团队通过利用基于 CNN 的 AlexNet 在 ImageNat 图像识别数据集上取得巨大成果,其创新点在于使用了 ReLU 激活函数,其特点是输入信号为正数输出不变,输入为负时,输出为 0,从而加速了收敛速度,这为目标识别技术的研究提供了强力解决方法。从此,计算机视觉很多方法都采用卷积神经网络作为特征提取的方法,深度学习的有监督学习也成为了主要的学习方向,随后一系列基于候选框与深度学习结合的算法被提出。利用区域推荐的方法,首先通过 CNN 网络生成候选框,对这些候选框进行分类与去重,该类算法包括 2014 年提出的 R-CNN 和Fast R-CNN以及2015年提出的Faster R-CNN,其中R-CNN,采用了AlexNet获取图像的特征向量,Faster R-CNN 是对 R-CNN、Fast R-CNN 的性能的改善,采用 ResNet网络提取卷积特征,使用区域生成网络(RPN)来推荐候选区域以提升检测框的生成,并将 RPN 与 Fast R-CNN 进行耦合,实现了 end to end 的目标识别网络,使得目标检测性能有了大的提高。随着对目标识别检测精度要求的提高,基于深度学习的回归方法被提出,该算法在检测过程可以一步得出待识别物体类型以及所在图像的位置坐标值,如 2015 年首次被 Joseph Redmon 等人提出的YOLO,2016 年提出的 SSD,相比较于 R-CNN 系列有着更好的检测速度。之后Joseph Redmon 团队又相继提出 YOLOv2,YOLOv3。2020年YOLOv4,YOLOv5 又相继被提出。

相关文章
|
机器学习/深度学习 人工智能 算法
目标检测的国内外研究现状
作为计算机领域的一个重要的研究成果,深度卷积神经网络已经广泛用于图像分类问题。随着图像分类的准确度提高,基于卷积神经网络的图像目标检测算法已逐渐成为当前的研究热点。
5920 0
|
机器学习/深度学习 监控 算法
目标检测的发展与现状
目标检测领域发展至今已有二十余载,从早期的传统方法到如今的深度学习方法,精度越来越高的同时速度也越来越快,这得益于深度学习等相关技术的不断发展。
1634 0
|
5月前
|
机器学习/深度学习 传感器 人工智能
高效能计算机视觉技术在工业自动化中的应用与发展
随着工业自动化的迅速发展,高效能计算机视觉技术正成为关键驱动力。本文探讨了计算机视觉在工业自动化中的重要性,以及其应用和未来发展趋势。通过深入分析现有技术和案例研究,展示了计算机视觉如何提升生产效率、质量控制和安全性,并展望了其在智能制造中的潜力。 【7月更文挑战第13天】
82 1
|
7月前
|
5G SDN 数据中心
网络即服务的现状及展望
网络即服务(NaaS)随着云计算的发展以及5G产业带动的软件定义网络(SDN)和网络虚拟化(NFV)越来越为大众所知,近两年越来越普及的SD-WAN,以及升级版的SASE(安全接入服务边缘)可以说是其中最为代表性的应用方向。
|
传感器 机器学习/深度学习 人工智能
受蝗虫启发!自动驾驶避险出现新思路
受蝗虫启发!自动驾驶避险出现新思路
119 0
|
机器学习/深度学习 监控 算法
工业智能安防目标检测算法研究现状
随着智慧城市建设的不断推进和人工智能技术的快速发展,智能安防和人员智能化管理开始受到社会广泛关注。人体行为识别是通过视频监控挖掘人员信息的核心环节,对于智慧城市的建设具有重要意义。但是,面对复杂的监控场景和海量的视频数据,传统的人体行为识别方法,已经无法满足日益增长的工业应用需求。
330 0
|
传感器 人工智能 监控
机器人的分类、发展史、现状及国内外发展趋势
机器人的分类、发展史、现状及国内外发展趋势
|
机器学习/深度学习 人工智能 安全
人脸识别技术发展现状及未来发展趋势
人脸识别,通常也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术,主要用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术。
人脸识别技术发展现状及未来发展趋势
|
机器学习/深度学习 人工智能 安全
从脑机接口到量子计算:未来10年的十大科技趋势
21世纪的第2个十年已经过去,在这个十年,我们已经见证众多新技术掀起的颠覆式变革。那么在下一个十年,又会有怎样的变化?
|
人工智能 计算机视觉