带你学MySQL系列 | “数据分析师”面试最怕被问到的SQL优化问题(下)(一)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 带你学MySQL系列 | “数据分析师”面试最怕被问到的SQL优化问题(下)(一)

本文大纲

前面我已经带着大家学习了本文的第1-4个部分,今天就带大家学习这剩下的5-8个部分。MySQL优化问题对于新手学习,一般是个难题!我的教程自认为已经是很通俗易懂的。如果你学习了这个教程后,仍然不太理解,可以去B站找到一个视频浏览一遍,然后再回头看我的文章。

image.png


讲解使用的数据源

在上篇最后,我们已经给出了本文需要使用到的数据代码,这里我直接给出这3张表的图示。

image.png


5. explain执行计划常用关键字详解

1)id关键字的使用说明、

① 案例:查询课程编号为2 或 教师证编号为3 的老师信息;

# 查看执行计划
explain select t.*
from teacher t,course c,teacherCard tc
where t.tid = c.tid and t.tcid = tc.tcid
and (c.cid = 2 or tc.tcid = 3);


结果如下:

image.png

接着,在往teacher表中增加几条数据。


insert into teacher values(4,'ta',4);
insert into teacher values(5,'tb',5);
insert into teacher values(6,'tc',6);


再次查看执行计划。

# 查看执行计划
explain 
select 
  t.*
from 
  teacher t,course c,teacherCard tc
where 
  t.tid = c.tid and t.tcid = tc.tcid
  and (c.cid = 2 or tc.tcid = 3);


结果如下:

image.png

这里先记住一句话:表的执行顺序 ,因表数量改变而改变的原因:笛卡尔积。怎么回事呢?看看下面这个例子。


# 下面举一个例子
a   b   c
2   3   4
最终:2 * 3 * 4  = 6 * 4 = 24
c   b   a
4   3   2
最终:4 * 3 * 2 = 12 * 2 = 24


分析:最终执行的条数,虽然是一致的。但是中间过程,有一张临时表是6,一张临时表是12,很明显6 < 12,对于内存来说,数据量越小越好,因此优化器肯定会选择第一种执行顺序。


结论:id值相同,从上往下顺序执行。表的执行顺序因表数量的改变而改变,数量越小,越在前面执行。


② 案例:查询教授SQL课程的老师的描述(desc)

# 查看执行计划
explain 
select 
  tc.tcdesc 
from 
  teacherCard tc 
where tc.tcid = 
(
    select t.tcid from teacher t 
    where  t.tid =  
    (select c.tid from course c where c.cname = 'sql')
);


结果如下:

image.png

结论:id值不同,id值越大越优先查询。这是由于在进行嵌套子查询时,先查内层,再查外层。


③ 针对②做一个简单的修改

# 查看执行计划
explain 
select 
  t.tname ,tc.tcdesc 
from 
  teacher t,teacherCard tc 
where 
  t.tcid= tc.tcid
  and t.tid = (select c.tid from course c where cname = 'sql') ;


结果如下:

image.png

结论:id值有相同,又有不同。id值越大越优先;id值相同,从上往下顺序执行。


2)select_type关键字的使用说明:查询类型

select_type关键字共有如下常用的6种类型,下面我分别带着大家梳理一下,它们各自的含义。

image.png


① simple:简单查询

不包含子查询,不包含union查询。

explain select * from teacher;


结果如下:

image.png


② primary:包含子查询的主查询(最外层)

③ subquery:包含子查询的主查询(非最外层)

关于primary和subquery,我们就拿下面的这个例子进行演示。从代码中可以看到这个SQL语句是存在子查询的,换句话说,这个SQL语句包含子查询。where内层(非最外层)使用到的c表属于非最外层,因此是subquery关键字。where外层使用到了t表 和tc表,因此是primary关键字。


# 查看执行计划
explain 
select 
  t.tname ,tc.tcdesc 
from 
  teacher t,teacherCard tc 
where 
  t.tcid= tc.tcid
  and t.tid = (select c.tid from course c where cname = 'sql') ;


结果如下:

image.png

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1天前
|
Cloud Native 关系型数据库 MySQL
无缝集成 MySQL,解锁秒级数据分析性能极限
在数据驱动决策的时代,一款性能卓越的数据分析引擎不仅能提供高效的数据支撑,同时也解决了传统 OLTP 在数据分析时面临的查询性能瓶颈、数据不一致等挑战。本文将介绍通过 AnalyticDB MySQL + DTS 来解决 MySQL 的数据分析性能问题。
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
8月前
|
数据采集 SQL 数据挖掘
2024年8个Python高效数据分析的技巧_python 数据分析 效率,2024年最新阿里社招p7面试几轮
2024年8个Python高效数据分析的技巧_python 数据分析 效率,2024年最新阿里社招p7面试几轮
|
5月前
|
前端开发 数据挖掘 关系型数据库
基于Python的哔哩哔哩数据分析系统设计实现过程,技术使用flask、MySQL、echarts,前端使用Layui
本文介绍了一个基于Python的哔哩哔哩数据分析系统,该系统使用Flask框架、MySQL数据库、echarts数据可视化技术和Layui前端框架,旨在提取和分析哔哩哔哩用户行为数据,为平台运营和内容生产提供科学依据。
339 9
|
5月前
|
存储 SQL 人工智能
AnalyticDB for MySQL:AI时代实时数据分析的最佳选择
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
|
5月前
|
存储 数据采集 数据可视化
基于Python flask+MySQL+echart的电影数据分析可视化系统
该博客文章介绍了一个基于Python Flask框架、MySQL数据库和ECharts库构建的电影数据分析可视化系统,系统功能包括猫眼电影数据的爬取、存储、展示以及电影评价词云图的生成。
268 1
|
6月前
|
存储 SQL 索引
面试题MySQL问题之使用SQL语句创建一个索引如何解决
面试题MySQL问题之使用SQL语句创建一个索引如何解决
63 1
|
6月前
|
数据采集 机器学习/深度学习 数据可视化
了解数据科学面试中的Python数据分析重点,包括Pandas(DataFrame)、NumPy(ndarray)和Matplotlib(图表绘制)。
【7月更文挑战第5天】了解数据科学面试中的Python数据分析重点,包括Pandas(DataFrame)、NumPy(ndarray)和Matplotlib(图表绘制)。数据预处理涉及缺失值(dropna(), fillna())和异常值处理。使用describe()进行统计分析,通过Matplotlib和Seaborn绘图。回归和分类分析用到Scikit-learn,如LinearRegression和RandomForestClassifier。
121 3
|
7月前
|
SQL 大数据
常见大数据面试SQL-每年总成绩都有所提升的学生
一张学生成绩表(student_scores),有year-学年,subject-课程,student-学生,score-分数这四个字段,请完成如下问题: 问题1:每年每门学科排名第一的学生 问题2:每年总成绩都有所提升的学生
|
7月前
|
SQL 关系型数据库 MySQL
sql面试题库
sql面试题库