SQL调优指南—SQL调优进阶—JOIN优化和执行

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文主要介绍如何使用JOIN。JOIN将多个表以某个或某些列为条件进行连接操作而检索出关联数据的过程,多个表之间以共同列而关联在一起。

基本概念

JOIN是SQL查询中常见的操作,逻辑上说,它的语义等价于将两张表做笛卡尔积,然后根据过滤条件保留满足条件的数据。JOIN多数情况下是依赖等值条件做的JOIN,即Equi-Join,用来根据某个特定列的值连接两张表的数据。

子查询是指嵌套在SQL内部的查询块,子查询的结果作为输入,填入到外层查询中,从而用于计算外层查询的结果。子查询可以出现在SQL语句的很多地方,比如在SELECT子句中作为输出的数据,在FROM子句中作为输入的一个视图,在WHERE子句中作为过滤条件等。

本文讨论的均为不下推的JOIN算子。如果JOIN被下推到LogicalView中,其执行方式由存储层MySQL自行选择。

JOIN类型

PolarDB-X支持Inner Join,Left Outer Join和Right Outer Join这3种常见的JOIN类型。2.5.png下面是几种不同类型JOIN示例:


/* Inner Join */
SELECT * FROM A, B WHERE A.key = B.key;
/* Left Outer Join */
SELECT * FROM A LEFT JOIN B ON A.key = B.key;
/* Right Outer Join */
SELECT * FROM A RIGHT OUTER JOIN B ON A.key = B.key;

还支持Semi-Join和Anti-Join。Semi Join和Anti Join无法直接用SQL语句来表示,通常由包含关联项的EXISTS或IN子查询转换得到。如下为Semi-Join和Anti-Join的示例。


/* Semi Join - 1 */

SELECT * FROM Emp WHERE Emp.DeptName IN (
SELECT DeptName FROM Dept
)
/ Semi Join - 2 /
SELECT * FROM Emp WHERE EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)
/ Anti Join - 1 /
SELECT * FROM Emp WHERE Emp.DeptName NOT IN (
SELECT DeptName FROM Dept
)
/ Anti Join - 2 /
SELECT * FROM Emp WHERE NOT EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)

JOIN算法

目前,PolarDB-X支持Nested-Loop Join、Hash Join、Sort-Merge Join和Lookup Join(BKAJoin)等JOIN算法。

Nested-Loop Join (NLJoin)

Nested-Loop Join通常用于非等值的JOIN。它的工作方式如下:

  1. 拉取内表(右表,通常是数据量较小的一边)的全部数据,缓存到内存中。
  2. 遍历外表数据,对于外表的每行:
    • 对于每一条缓存在内存中的内表数据。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  1. 如下为Nested-Loop Join示例:
> EXPLAIN SELECT * FROM partsupp, supplier WHERE ps_suppkey < s_suppkey;
NlJoin(condition="ps_suppkey < s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

通常来说,Nested-Loop Join是效率最低的JOIN操作,一般只有在JOIN条件不含等值(例如上面的例子)或者内表数据量极小的情况下才会使用。通过如下Hint可以强制PolarDB-X使用Nested-Loop Join以及确定JOIN顺序:


/+TDDL:NL_JOIN(outer_table, inner_table)/ SELECT ...

其中inner_table 和outer_table也可以是多张表的JOIN结果,例如:


/+TDDL:NL_JOIN((outer_table_a, outer_table_b), (inner_table_c, inner_table_d))/ SELECT ...

Hash Join

Hash Join是等值JOIN最常用的算法之一。它的原理如下所示:

  • 拉取内表(右表,通常是数据量较小的一边)的全部数据,写进内存中的哈希表。
  • 遍历外表数据,对于外表的每行:
    • 根据等值条件JOIN Key查询哈希表,取出0-N匹配的行(JOIN Key相同)。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  • Hash Join示例:
> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey;
HashJoin(condition="ps_suppkey = s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

Hash Join常出现在JOIN数据量较大的复杂查询、且无法通过索引Lookup来改善,这种情况下Hash Join是最优的选择。例如上面的例子中,partsupp表和supplier表均为全表扫描,数据量较大,适合使用HashJoin。由于Hash Join的内表需要用于构造内存中的哈希表,内表的数据量一般小于外表。通常优化器可以自动选择出最优的JOIN顺序。如果需要手动控制,也可以通过下面的Hint。

通过如下Hint可以强制PolarDB-X使用Hash Join以及确定JOIN顺序:


/+TDDL:HASH_JOIN(table_outer, table_inner)/ SELECT ...

Lookup Join (BKAJoin)

Lookup Join是另一种常用的等值JOIN算法,常用于数据量较小的情况。它的原理如下:

  1. 遍历外表(左表,通常是数据量较小的一边)数据,对于外表中的每批(例如1000行)数据。
  2. 将这一批数据的JOIN Key拼成一个IN (....)条件,加到内表的查询中。
  3. 执行内表查询,得到JOIN匹配的行。
  4. 借助哈希表,为外表的每行找到匹配的内表行,组合并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey AND ps_partkey = 123;
BKAJoin(condition="ps_suppkey = s_suppkey", type="inner")
LogicalView(tables="partsupp_3", sql="SELECT * FROM `partsupp` AS `partsupp` WHERE (`ps_partkey` = ?)")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` WHERE (`s_suppkey` IN ('?'))")

Lookup Join通常用于外表数据量较小的情况,例如上面的例子中,左表partsupp由于存在ps_partkey = 123的过滤条件,仅有几行数据。此外,右表的s_suppkey IN ( ... )查询命中了主键索引,这也使得Lookup Join的查询代价进一步降低。

通过如下Hint可以强制PolarDB-X使用LookupJoin以及确定JOIN顺序:


/+TDDL:BKA_JOIN(table_outer, table_inner)/ SELECT ...


说明 Lookup Join的内表只能是单张表,不可以是多张表JOIN的结果。

Sort-Merge Join

Sort-Merge Join是另一种等值JOIN算法,它依赖左右两边输入的顺序,必须按JOIN Key排序。它的原理如下:

  1. 开始Sort-Merge Join之前,输入端必须排序(借助MergeSort或MemSort)。
  2. 比较当前左右表输入的行,并按以下方式操作,不断消费左右两边的输入:
    • 如果左表的JOIN Key较小,则消费左表的下一条数据。
    • 如果右表的JOIN Key较小,则消费右表的下一条数据。
    • 如果左右表JOIN Key相等,说明获得了1条或多条匹配,检查是否满足JOIN条件并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey ORDER BY s_suppkey;
SortMergeJoin(condition="ps_suppkey = s_suppkey", type="inner")
MergeSort(sort="ps_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp` ORDER BY `ps_suppkey`")
MergeSort(sort="s_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` ORDER BY `s_suppkey`")

上面执行计划中的 MergeSort算子以及下推的ORDER BY,这保证了Sort-Merge Join两边的输入按JOIN Key即s_suppkey (ps_suppkey)排序。

Sort-Merge Join由于需要额外的排序步骤,通常Sort-Merge Join并不是最优的。但是,某些情况下客户端查询恰好也需要按JOIN Key排序(上面的例子),这时候使用Sort-Merge Join是较优的选择。

通过如下Hint可以强制PolarDB-X使用Sort-Merge Join


/+TDDL:SORT_MERGE_JOIN(table_a, table_b)/ SELECT ...

JOIN顺序

在多表连接的场景中,优化器的一个很重要的任务是决定各个表之间的连接顺序,因为不同的连接顺序会影响中间结果集的大小,进而影响到计划整体的执行代价。

例如,对于4张表JOIN(暂不考虑下推的情形),JOIN Tree可以有如下3种形式,同时表的排列又有4! = 24种,一共有72种可能的JOIN顺序。3.2.png

下面是几种不同类型JOIN示例:


/ Inner Join */
SELECT * FROM A, B WHERE A.key = B.key;
/ Left Outer Join /
SELECT * FROM A LEFT JOIN B ON A.key = B.key;
/ Right Outer Join /
SELECT FROM A RIGHT OUTER JOIN B ON A.key = B.key;

还支持Semi-Join和Anti-Join。Semi Join和Anti Join无法直接用SQL语句来表示,通常由包含关联项的EXISTS或IN子查询转换得到。如下为Semi-Join和Anti-Join的示例。


/ Semi Join - 1 */
SELECT * FROM Emp WHERE Emp.DeptName IN (
SELECT DeptName FROM Dept
)
/ Semi Join - 2 /
SELECT * FROM Emp WHERE EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)
/ Anti Join - 1 /
SELECT * FROM Emp WHERE Emp.DeptName NOT IN (
SELECT DeptName FROM Dept
)
/ Anti Join - 2 /
SELECT * FROM Emp WHERE NOT EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)

JOIN算法

目前,PolarDB-X支持Nested-Loop Join、Hash Join、Sort-Merge Join和Lookup Join(BKAJoin)等JOIN算法。

Nested-Loop Join (NLJoin)

Nested-Loop Join通常用于非等值的JOIN。它的工作方式如下:

  1. 拉取内表(右表,通常是数据量较小的一边)的全部数据,缓存到内存中。
  2. 遍历外表数据,对于外表的每行:
    • 对于每一条缓存在内存中的内表数据。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  1. 如下为Nested-Loop Join示例:
> EXPLAIN SELECT * FROM partsupp, supplier WHERE ps_suppkey < s_suppkey;
NlJoin(condition="ps_suppkey < s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

通常来说,Nested-Loop Join是效率最低的JOIN操作,一般只有在JOIN条件不含等值(例如上面的例子)或者内表数据量极小的情况下才会使用。通过如下Hint可以强制PolarDB-X使用Nested-Loop Join以及确定JOIN顺序:


/+TDDL:NL_JOIN(outer_table, inner_table)/ SELECT ...

其中inner_table 和outer_table也可以是多张表的JOIN结果,例如:


/+TDDL:NL_JOIN((outer_table_a, outer_table_b), (inner_table_c, inner_table_d))/ SELECT ...

Hash Join

Hash Join是等值JOIN最常用的算法之一。它的原理如下所示:

  • 拉取内表(右表,通常是数据量较小的一边)的全部数据,写进内存中的哈希表。
  • 遍历外表数据,对于外表的每行:
    • 根据等值条件JOIN Key查询哈希表,取出0-N匹配的行(JOIN Key相同)。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  • Hash Join示例:
> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey;
HashJoin(condition="ps_suppkey = s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

Hash Join常出现在JOIN数据量较大的复杂查询、且无法通过索引Lookup来改善,这种情况下Hash Join是最优的选择。例如上面的例子中,partsupp表和supplier表均为全表扫描,数据量较大,适合使用HashJoin。由于Hash Join的内表需要用于构造内存中的哈希表,内表的数据量一般小于外表。通常优化器可以自动选择出最优的JOIN顺序。如果需要手动控制,也可以通过下面的Hint。

通过如下Hint可以强制PolarDB-X使用Hash Join以及确定JOIN顺序:


/+TDDL:HASH_JOIN(table_outer, table_inner)/ SELECT ...

Lookup Join (BKAJoin)

Lookup Join是另一种常用的等值JOIN算法,常用于数据量较小的情况。它的原理如下:

  1. 遍历外表(左表,通常是数据量较小的一边)数据,对于外表中的每批(例如1000行)数据。
  2. 将这一批数据的JOIN Key拼成一个IN (....)条件,加到内表的查询中。
  3. 执行内表查询,得到JOIN匹配的行。
  4. 借助哈希表,为外表的每行找到匹配的内表行,组合并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey AND ps_partkey = 123;
BKAJoin(condition="ps_suppkey = s_suppkey", type="inner")
LogicalView(tables="partsupp_3", sql="SELECT * FROM `partsupp` AS `partsupp` WHERE (`ps_partkey` = ?)")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` WHERE (`s_suppkey` IN ('?'))")

Lookup Join通常用于外表数据量较小的情况,例如上面的例子中,左表partsupp由于存在ps_partkey = 123的过滤条件,仅有几行数据。此外,右表的s_suppkey IN ( ... )查询命中了主键索引,这也使得Lookup Join的查询代价进一步降低。

通过如下Hint可以强制PolarDB-X使用LookupJoin以及确定JOIN顺序:


/+TDDL:BKA_JOIN(table_outer, table_inner)/ SELECT ...


说明 Lookup Join的内表只能是单张表,不可以是多张表JOIN的结果。

Sort-Merge Join

Sort-Merge Join是另一种等值JOIN算法,它依赖左右两边输入的顺序,必须按JOIN Key排序。它的原理如下:

  1. 开始Sort-Merge Join之前,输入端必须排序(借助MergeSort或MemSort)。
  2. 比较当前左右表输入的行,并按以下方式操作,不断消费左右两边的输入:
    • 如果左表的JOIN Key较小,则消费左表的下一条数据。
    • 如果右表的JOIN Key较小,则消费右表的下一条数据。
    • 如果左右表JOIN Key相等,说明获得了1条或多条匹配,检查是否满足JOIN条件并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey ORDER BY s_suppkey;
SortMergeJoin(condition="ps_suppkey = s_suppkey", type="inner")
MergeSort(sort="ps_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp` ORDER BY `ps_suppkey`")
MergeSort(sort="s_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` ORDER BY `s_suppkey`")

上面执行计划中的 MergeSort算子以及下推的ORDER BY,这保证了Sort-Merge Join两边的输入按JOIN Key即s_suppkey (ps_suppkey)排序。

Sort-Merge Join由于需要额外的排序步骤,通常Sort-Merge Join并不是最优的。但是,某些情况下客户端查询恰好也需要按JOIN Key排序(上面的例子),这时候使用Sort-Merge Join是较优的选择。

通过如下Hint可以强制PolarDB-X使用Sort-Merge Join


/+TDDL:SORT_MERGE_JOIN(table_a, table_b)*/ SELECT ...

JOIN顺序

在多表连接的场景中,优化器的一个很重要的任务是决定各个表之间的连接顺序,因为不同的连接顺序会影响中间结果集的大小,进而影响到计划整体的执行代价。

例如,对于4张表JOIN(暂不考虑下推的情形),JOIN Tree可以有如下3种形式,同时表的排列又有4! = 24种,一共有72种可能的JOIN顺序。

相关实践学习
跟我学:如何一键安装部署 PolarDB-X
《PolarDB-X 动手实践》系列第一期,体验如何一键安装部署 PolarDB-X。
相关文章
|
SQL 存储 缓存
SQL调优指南—SQL调优进阶—JOIN优化和执行
本文主要介绍如何使用JOIN。JOIN将多个表以某个或某些列为条件进行连接操作而检索出关联数据的过程,多个表之间以共同列而关联在一起。
127 0
SQL调优指南—SQL调优进阶—JOIN优化和执行
|
SQL 存储 算法
SQL调优指南—SQL调优进阶—排序优化和执行
本文介绍如何排序(Order-by)算子,以达到减少数据传输量和提高执行效率的效果。
100 0
|
3天前
|
人工智能 弹性计算 运维
开启运维新纪元!阿里云OS Copilot深度评测 & 体验分享
OS Copilot是Alibaba Cloud为Linux推出的一款基于大模型的智能助手,它能理解自然语言、辅助命令执行和系统运维。目前仅支持Alibaba Cloud Linux 3的x86_64架构。安装过程涉及线上和本地体验,包括申请试用、配置环境变量、安装组件等步骤。OS Copilot提供命令行和多轮交互模式,能进行代码生成和摘要,辅助开发和运维工作。产品体验评测中,OS Copilot因其自然语言理解和高效辅助得到高度评价,尤其对运维人员来说,能大幅提升工作效率。然而,目前仅限于特定操作系统,是其局限性。未来有望扩展更多功能和支持更多平台。
88238 13
|
6天前
|
人工智能 弹性计算 API
创意“孵化机”——基于通义万相加速绘画创作流程
阿里云在2023年推出了AI绘画平台**通义万相**,该平台能够根据文本描述生成图像,应用于艺术创作。近期,阿里云优化了通义万相的接入方式,提供API文档和一键部署服务,使得非技术人员也能轻松集成到Web应用中。为促进用户尝试,阿里云还推出了解决方案评测活动,参与者有机会获得奖品。通义万相通过ECS、OSS、VPC和DashScope等云服务支持,简化了技术架构,加速了绘画创作流程。此外,阿里云提供了优惠购买方案,新人享有特别折扣。该服务不仅适用于艺术家,还可应用于多个领域,提高内容生成效率。
70721 19
|
9天前
|
人工智能 自然语言处理 算法
阿里云PAI大模型评测最佳实践
在大模型时代,模型评测是衡量性能、精选和优化模型的关键环节,对加快AI创新和实践至关重要。PAI大模型评测平台支持多样化的评测场景,如不同基础模型、微调版本和量化版本的对比分析。本文为您介绍针对于不同用户群体及对应数据集类型,如何实现更全面准确且具有针对性的模型评测,从而在AI领域可以更好地取得成就。
|
14天前
|
弹性计算 关系型数据库 数据库
手把手带你从自建 MySQL 迁移到云数据库,一步就能脱胎换骨
阿里云瑶池数据库来开课啦!自建数据库迁移至云数据库 RDS原来只要一步操作就能搞定!
|
14天前
|
机器学习/深度学习 算法 开发工具
通义千问2(Qwen2)大语言模型在PAI-QuickStart的微调、评测与部署实践
阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对Qwen2模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现Qwen2系列模型的微调、评测和快速部署。
|
16天前
|
人工智能 机器人 API
用AppFlow玩转通义百炼大模型应用
阿里云百炼平台提供一站式大模型开发服务,支持创建和定制应用,预置丰富插件和API。用户可以通过平台快速构建大模型应用,并利用AppFlow将其接入钉钉群聊,以AI卡片形式展示。
72978 5
|
14天前
|
存储 网络协议 安全
阿里云hpc8ae实例商业化发布详解
近日,全球领先的云计算厂商阿里云宣布最新HPC优化实例hpc8ae的正式商业化,该实例依托阿里云自研的「飞天+CIPU」架构体系,搭载第四代AMD EPYC处理器,专为高性能计算应用优化,特别适用于计算流体、有限元分析、多物理场模拟等仿真类应用,CAE场景下的性价比最少提升50%。
|
15天前
|
SQL 搜索推荐 OLAP
Flink 流批一体场景应用及落地情况
本文由阿里云 Flink 团队苏轩楠老师撰写,旨在介绍 Flink 流批一体在几个常见场景下的应用。
67528 3
Flink 流批一体场景应用及落地情况