SQL调优指南—SQL调优进阶—排序优化和执行

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文介绍如何排序(Order-by)算子,以达到减少数据传输量和提高执行效率的效果。

基本概念

排序操作(Sort)语义为按照指定的ORDER BY列对输入进行排序。本文介绍均为不下推的Sort的算子的实现。如果已被下推到LogicalView中,则由存储层MySQL来选择执行方式。

排序(Sort)

PolarDB-X中的排序算子主要包括 MemSort、TopN,以及 MergeSort。

MemSort

PolarDB-X中的通用的排序实现为MemSort算子,即内存中运行快速排序(Quick Sort)算法。下面是一个用到MemSort算子的例子:


> explain select t1.name from t1 join t2 on t1.id = t2.id order by t1.name,t2.name;
Project(name="name")
  MemSort(sort="name ASC,name0 ASC")
    Project(name="name", name0="name0")
      BKAJoin(condition="id = id", type="inner")
        Gather(concurrent=true)
          LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
        Gather(concurrent=true)
          LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

TopN

当SQL中ORDER BY和LIMIT一起出现时,Sort算子和Limit算子会合并成TopN算子。

TopN算子维护一个最大或最小堆,按照排序键的值,堆中始终保留最大或最小的N行数据。当处理完全部的输入数据时,堆中留下的N个行(或小于N个)就是需要的结果。


> explain select t1.name from t1 join t2 on t1.id = t2.id order by t1.name,t2.name limit 10;

Project(name="name")
TopN(sort="name ASC,name0 ASC", offset=0, fetch=?0)
Project(name="name", name0="name0")
BKAJoin(condition="id = id", type="inner")
Gather(concurrent=true)
LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

MergeSort

通常,只要语义允许,SQL中的排序操作会被下推到MySQL上执行,而PolarDB-X执行层只做最后的归并操作,即MergeSort。严格来说,MergeSort 不仅仅是排序,更是一种数据重分布算子(类似 Gather)。下面的SQL是对t1表进行排序,经过PolarDB-X查询优化器的优化,Sort算子被下推至各个MySQL分片中执行,最终只在上层做归并操作。


> explain select name from t1 order by name;
MergeSort(sort="name ASC")
LogicalView(tables="t1", shardCount=2, sql="SELECT `name` FROM `t1` AS `t1` ORDER BY `name`")

相比 MemSort,MergeSort 算法可以减少PolarDB-X层的内存消耗,并充分利用 MySQL 层的计算能力。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
24天前
|
SQL 存储 关系型数据库
如何巧用索引优化SQL语句性能?
本文从索引角度探讨了如何优化MySQL中的SQL语句性能。首先介绍了如何通过查看执行时间和执行计划定位慢SQL,并详细解析了EXPLAIN命令的各个字段含义。接着讲解了索引优化的关键点,包括聚簇索引、索引覆盖、联合索引及最左前缀原则等。最后,通过具体示例展示了索引如何提升查询速度,并提供了三层B+树的存储容量计算方法。通过这些技巧,可以帮助开发者有效提升数据库查询效率。
37 2
|
10天前
|
SQL 资源调度 分布式计算
如何让SQL跑快一点?(优化指南)
这篇文章主要探讨了如何在阿里云MaxCompute(原ODPS)平台上对SQL任务进行优化,特别是针对大数据处理和分析场景下的性能优化。
|
19天前
|
SQL 监控 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
2月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
459 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
22天前
|
SQL 关系型数据库 PostgreSQL
遇到SQL 子查询性能很差?其实可以这样优化
遇到SQL 子查询性能很差?其实可以这样优化
66 2
|
22天前
|
SQL Oracle 关系型数据库
Oracle SQL:了解执行计划和性能调优
Oracle SQL:了解执行计划和性能调优
35 1
|
19天前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
22天前
|
SQL 数据处理 数据库
SQL语句优化与查询结果优化:提升数据库性能的实战技巧
在数据库管理和应用中,SQL语句的编写和查询结果的优化是提升数据库性能的关键环节
|
22天前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化策略
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生不利影响
|
2月前
|
SQL 分布式计算 数据库
SQL调优总结
数据库表的规范化和反规范化设计,设计合适的字段数据类型……
43 8