spark CTAS union all (union all的个数很多)导致超过spark.driver.maxResultSize配置(1G)

简介: spark CTAS union all (union all的个数很多)导致超过spark.driver.maxResultSize配置(1G)

背景

该sql运行在spark版本 3.1.2下的thrift server下

现象

在运行包含多个union 的spark sql的时候报错(该sql包含了50多个uinon,且每个union字查询中会包含join操作),其中union中子查询sql类似如下:

SELECT  a1.order_no
                    ,a1.need_column
                    ,a1.join_id
            FROM    temp.actul_a a1 
            join temp.actul_a a2 on a1.join_id = a2.join_id and a2.need_column = 'we need it' 
            WHERE a1.need_column ='others needs it'

运行对应的sql,报错如下:

Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Total size of serialized results of 22460 tasks (2.0 GiB) is bigger than spark.driver.maxResultSize (2.0 GiB)
 at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2258)
 at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2207)
 at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2206)
 at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
 at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
 at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
 at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2206)
 at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1079)
 at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1079)
 at scala.Option.foreach(Option.scala:407)
 at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1079)
 at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2445)
 at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2387)
 at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2376)
 at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
 at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:868)
 at org.apache.spark.SparkContext.runJob(SparkContext.scala:2196)
 at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:200)
 ... 40 more (state=,code=0)

问题复盘以及解决


问题复盘


参与union操作的所有RDD的任务组成了union操作的所有任务

每个写文件的任务在resultTask执行完之后把文件的元数据(包括,文件个数,文件大小,文件行数)回传给driver

driver会计算一个taskSet里面的所有的resultTask任务结果的元数据(每完成一个task计算一下)是超过spark.driver.maxResultSize值,如果超过就直接报错

解决


把分区合并的初始分区减少,目前是1000。

set spark.sql.adaptive.coalescePartitions.initialPartitionNum=200;


分析以及解释


报错的流程复盘(代码级别)

对对应的sql进行explain,由于代码过长,自己复制粘贴即可,得到如下物理计划:

+----------------------------------------------------+
|                        plan                        |
+----------------------------------------------------+
| == Physical Plan ==
Execute OptimizedCreateHiveTableAsSelectCommand [Database: default, TableName: actul_a, InsertIntoHadoopFsRelationCommand]
+- AdaptiveSparkPlan isFinalPlan=false
   +- Union
      :...

其中union的操作的子节点有50多个,着重观察OptimizedCreateHiveTableAsSelectCommand 和unionExec两个物理计划,

在分析这两个物理计划之前,先分析一下报错的地方的源码,直接搜索可以找到

TaskSetManager.scala
 def canFetchMoreResults(size: Long): Boolean = sched.synchronized {
    totalResultSize += size
    calculatedTasks += 1
    if (!isShuffleMapTasks && maxResultSize > 0 && totalResultSize > maxResultSize) {
      val msg = s"Total size of serialized results of ${calculatedTasks} tasks " +
        s"(${Utils.bytesToString(totalResultSize)}) is bigger than ${config.MAX_RESULT_SIZE.key} " +
        s"(${Utils.bytesToString(maxResultSize)})"
      logError(msg)
      abort(msg)
      false
    } else {
      true
    }
  }

而canFetchMoreResults这个方法最终会被TaskSchedulerImpl.scala的statusUpdate方法调用:

def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer): Unit = {
     ...
            if (TaskState.isFinished(state)) {
              cleanupTaskState(tid)
              taskSet.removeRunningTask(tid)
              if (state == TaskState.FINISHED) {
                taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData)
              } else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
                taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
              }
            }
    ...

注意到这里所有的tid都是在同一个taskSet中,而taskSet是从资源池在获取的,如下:

    val sortedTaskSets = rootPool.getSortedTaskSetQueue

那资源池的taskset是从哪里进去的?在submitTasks方法中:

override def submitTasks(taskSet: TaskSet): Unit = {
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks "
      + "resource profile " + taskSet.resourceProfileId)
    this.synchronized {
      val manager = createTaskSetManager(taskSet, maxTaskFailures)
      val stage = taskSet.stageId
      val stageTaskSets =
        taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
      stageTaskSets(taskSet.stageAttemptId) = manager
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

而这里的taskSet由DAGSchduler调用:

 taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties,
        stage.resourceProfileId))

而这里的tasks参数是由:partitionsToCompute来的:

val tasks: Seq[Task[_]] = try {
      val serializedTaskMetrics = closureSerializer.serialize(stage.latestInfo.taskMetrics).array()
      stage match {
        case stage: ShuffleMapStage =>
          stage.pendingPartitions.clear()
          partitionsToCompute.map { id =>
            val locs = taskIdToLocations(id)
            val part = partitions(id)
            stage.pendingPartitions += id
            new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
              taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
              Option(sc.applicationId), sc.applicationAttemptId, stage.rdd.isBarrier())
          }
        case stage: ResultStage =>
          partitionsToCompute.map { id =>
            val p: Int = stage.partitions(id)
            val part = partitions(p)
            val locs = taskIdToLocations(id)
            new ResultTask(stage.id, stage.latestInfo.attemptNumber,
              taskBinary, part, locs, id, properties, serializedTaskMetrics,
              Option(jobId), Option(sc.applicationId), sc.applicationAttemptId,
              stage.rdd.isBarrier())
          }
      }

而最终partitionsToCompute调用了rdd.partitions方法, 最终调用getPartitions方法,这个方法会在unionRDD有体现,

,我们再来看UnionExec:

case class UnionExec(children: Seq[SparkPlan]) extends SparkPlan {
  ···
  protected override def doExecute(): RDD[InternalRow] =
    sparkContext.union(children.map(_.execute()))
}

sparkContext.union会返回UnionRDD,而uninRDD对应的getPartitions方法就是所有的rdd的分区之和,再结合之前分析的taskset,可以得到

unionRDD的task数量就是所有参与union操作的RDD的task的个数。

那为啥会出现超出spark.driver.maxResultSize (2.0 GiB)的问题呢?

再看OptimizedCreateHiveTableAsSelectCommand 执行计划,该计划最终会调用InsertIntoHadoopFsRelationCommand的Run方法:

override def run(sparkSession: SparkSession, child: SparkPlan): Seq[Row] = {
   ···
      val updatedPartitionPaths =
        FileFormatWriter.write(
          sparkSession = sparkSession,
          plan = child,
          fileFormat = fileFormat,
          committer = committer,
          outputSpec = FileFormatWriter.OutputSpec(
            committerOutputPath.toString, customPartitionLocations, outputColumns),
          hadoopConf = hadoopConf,
          partitionColumns = partitionColumns,
          bucketSpec = bucketSpec,
          statsTrackers = Seq(basicWriteJobStatsTracker(hadoopConf)),
          options = options)
···

而FileFormatWriter.write最终调用spark的runJob方法,以及每个task会返回WriteTaskResult(包括了写入的文件的分区,大小,个数,以及数据行):

 val ret = new Array[WriteTaskResult](rddWithNonEmptyPartitions.partitions.length)
      sparkSession.sparkContext.runJob(
        rddWithNonEmptyPartitions,
        (taskContext: TaskContext, iter: Iterator[InternalRow]) => {
          executeTask(
            description = description,
            jobIdInstant = jobIdInstant,
            sparkStageId = taskContext.stageId(),
            sparkPartitionId = taskContext.partitionId(),
            sparkAttemptNumber = taskContext.taskAttemptId().toInt & Integer.MAX_VALUE,
            committer,
            iterator = iter)
        },
        rddWithNonEmptyPartitions.partitions.indices,
        (index, res: WriteTaskResult) => {
          committer.onTaskCommit(res.commitMsg)
          ret(index) = res
        })

executeTask的方法才是真正执行write任务的逻辑:

···
try {
      Utils.tryWithSafeFinallyAndFailureCallbacks(block = {
        // Execute the task to write rows out and commit the task.
        while (iterator.hasNext) {
          dataWriter.write(iterator.next())
        }
        dataWriter.commit()
      })(catchBlock = {
···

dataWriter.write方法真正的写数据,dataWrite.commit方法返回对应的Task执行时候产生的WriteTaskResult信息。

对应到ResultTask就是func(context, rdd.iterator(partition, context)):

ResultTask.scala
 override def runTask(context: TaskContext): U = {
    // Deserialize the RDD and the func using the broadcast variables.
    val threadMXBean = ManagementFactory.getThreadMXBean
    val deserializeStartTimeNs = System.nanoTime()
    val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
      threadMXBean.getCurrentThreadCpuTime
    } else 0L
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
    _executorDeserializeTimeNs = System.nanoTime() - deserializeStartTimeNs
    _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
      threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
    } else 0L
    func(context, rdd.iterator(partition, context))
  }

而该方法最终被Executor.scala的Run方法调用:

val value = Utils.tryWithSafeFinally {
          val res = task.run(
            taskAttemptId = taskId,
            attemptNumber = taskDescription.attemptNumber,
            metricsSystem = env.metricsSystem,
            resources = taskDescription.resources,
            plugins = plugins)
          threwException = false
          res

而结果最终经过一系列的判断,最终回传给CoarseGrainedSchedulerBackend:

 val serializedResult: ByteBuffer = {
          if (maxResultSize > 0 && resultSize > maxResultSize) {
            logWarning(s"Finished $taskName. Result is larger than maxResultSize " +
              s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
              s"dropping it.")
            ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
          } else if (resultSize > maxDirectResultSize) {
            val blockId = TaskResultBlockId(taskId)
            env.blockManager.putBytes(
              blockId,
              new ChunkedByteBuffer(serializedDirectResult.duplicate()),
              StorageLevel.MEMORY_AND_DISK_SER)
            logInfo(s"Finished $taskName. $resultSize bytes result sent via BlockManager)")
            ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
          } else {
            logInfo(s"Finished $taskName. $resultSize bytes result sent to driver")
            serializedDirectResult
          }
        }
        executorSource.SUCCEEDED_TASKS.inc(1L)
        setTaskFinishedAndClearInterruptStatus()
        plugins.foreach(_.onTaskSucceeded())
        execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)

最终传给TaskSchedulerImpl的statusUpdate方法,之后再到canFetchMoreResults,从而在代码上形成了闭环。


但是为什么导致这么多的task数量呢?原因在于spark.sql.adaptive.coalescePartitions.initialPartitionNum的设置

我们设置是1000,导致在AQE和开启分区合并的前提下,会导致主要是涉及shuffle的操作的时候,shuffle完之后的分区数就是1000,而在开启了localShuffleReader的前提下,

该分区的也不会大量的减少, 具体见SQLConf.scala:

def numShufflePartitions: Int = {
    if (adaptiveExecutionEnabled && coalesceShufflePartitionsEnabled) {
      getConf(COALESCE_PARTITIONS_INITIAL_PARTITION_NUM).getOrElse(defaultNumShufflePartitions)
    } else {
      defaultNumShufflePartitions
    }
  }

于为什么开启了localShuffleReader的前提下没有大量减少,下次再聊.

相关文章
|
4天前
|
分布式计算 Hadoop Scala
Spark【环境搭建 01】spark-3.0.0-without 单机版(安装+配置+测试案例)
【4月更文挑战第13天】Spark【环境搭建 01】spark-3.0.0-without 单机版(安装+配置+测试案例)
8 0
|
5月前
|
分布式计算 Java Scala
配置spark,并在idea中搭建项目
配置spark,并在idea中搭建项目
71 0
|
6月前
|
SQL 分布式计算 Hadoop
配置Hive使用Spark执行引擎
在Hive中,可以通过配置来指定使用不同的执行引擎。Hive执行引擎包括:默认MR、tez、spark。
153 0
|
9月前
|
SQL 分布式计算 Hadoop
Spark SQL CLI配置
Spark SQL CLI配置
Spark SQL CLI配置
|
分布式计算 大数据 Shell
Spark 环境搭建_配置 HistoryServer|学习笔记
快速学习 Spark 环境搭建_配置 HistoryServer
347 0
Spark 环境搭建_配置 HistoryServer|学习笔记
|
分布式计算 大数据 调度
Spark 集群搭建_高可用配置|学习笔记
快速学习 Spark 集群搭建_高可用配置
205 0
Spark 集群搭建_高可用配置|学习笔记
|
分布式计算 Hadoop 大数据
分布式集群环境之Spark的安装与配置(Centos7)
分布式集群环境之Spark的安装与配置(Centos7)
271 0
分布式集群环境之Spark的安装与配置(Centos7)
|
分布式计算 Hadoop Linux
Spark集群搭建记录 | 云计算[CentOS7] | Spark配置
写在前面 step1 Spark下载 step2 修改环境变量 ~/.bashrc /etc/profile step3 配置Master-文件修改 slaves spark-env.sh step4 配置slave节点 step5 集群启动 step6 web浏览器状态查看 step7 配置开机启动(可选)
218 0
Spark集群搭建记录 | 云计算[CentOS7] | Spark配置
|
分布式计算 资源调度 Java
spark on yarn模式安装和配置carbondata
前置条件 Hadoop HDFS 和 Yarn 需要安装和运行。 Spark 需要在所有的集群节点上安装并且运行。 CarbonData 用户需要有权限访问 HDFS. 以下步骤仅针对于 Driver 程序所在的节点. (Driver 节点就是启动 SparkContext 的节点)
|
分布式计算 Java Spark
Spark面试题(八)——Spark的Shuffle配置调优
对Spark的Shuffle配置调优建议。
436 0