学习笔记 | 深度学习开发—TensorFlow实践(线性回归 tensorflow实战)

简介: 学习笔记 | 深度学习开发—TensorFlow实践(线性回归 tensorflow实战)

监督式机器学习


1.简单的线性回归案例

image.png


确定y=w*x+b这样的方程,其中w和b的值


2.术语:标签和特征

标签:是我们要预测的真实事物:y,线性回归中的y变量


特征:是指用于描述数据的输入变量:xi线性回归中的{x1,x2,x3,……,xn}变量


3.样本和模型

样本是指数据的特定实例:x


有标签样本具有{特征,标签}:{x,y}:用于训练模型


无标签样本具有{特征,?}:{x,?}:用于对新数据做出预测


模型可将样本映射到预测标签:y'


由模型的内部参数定义,这些内部参数值是通过学习得到的


4.训练

训练模型表示通过有标签样本来学习(确定)所有权重和偏差的理想值。


在监督学习中,机器学习算法通过以下方式构建模型:


检查多个样本并尝试找出最大限度地减少损失的模型,这一过程称为经验风险最小化。


5.损失

损失是对糟糕预测的惩罚:损失是一个数值,表示对于单个样本而言模型预测的准确程度


如果模型的预测完全准确,则损失为零,否则损失会较大训练模型的目标是从所有样本中找到一组平均损失“较小”的权重和偏差


image.png


6.定义损失函数

L1损失:基于模型预测的值与标签的实际值之差的绝对值


平方损失:一种常见的损失函数,又称为 L2 损失


均方误差 (MSE) 指的是每个样本的平均平方损失


image.png


以下曲线图中显示的两个数据集,哪个数据集的均方误差 (MSE) 较高?


image.png


答案:第二个比较高,损失大


模型训练与降低损失


1.训练模型的迭代方法

image.png


2.模型训练要点

首先对权重w和偏差b进行初始猜测


然后反复调整这些猜测


直到获得损失可能最低的权重和偏差为止


3.收敛

在学习优化过程中,机器学习系统将根据所有标签去重新评估所有特征,为损失函数生成一个新值,而该值又产生新的参数值。


通常,您可以不断迭代,直到总体损失不再变化或至少变化极其缓慢为止。这时候,我们可以说该模型已收敛


4.计算损失例子

该线性回归问题产生的损失与权重图为凸形


凸形问题只有一个最低点;即只存在一个斜率正好为 0 的位置,这个最小值就是损失函数收敛之处


image.png



梯度下降法

梯度:一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大


image.png


image.png




梯度是矢量:具有方向和大小


image.png


沿着负梯度方向进行下一步探索


学习率


沿着负梯度方向进行下一步探索,前进多少合适呢?


用梯度乘以一个称为学习速率(有时也称为步长)的标量,


以确定下一个点的位置


例如:如果梯度大小为2.5,学习速率为0.01,则梯度下降法算法会选择距离前一个点0.025的位置作为下一个点


image.png


                       梯度学习速率过小             梯度学习速率过大


image.png

超参数

在机器学习中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,选择一组好的超参数,可以提高学习的性能和效果超参数是编程人员在机器学习算法中用于调整的旋钮 典型超参数:学习率、神经网络的隐含层数量……


相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
153 55
|
19天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
90 5
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能:深度学习的奥秘与实践
在本文中,我们将深入浅出地探索深度学习的神秘面纱。从基础概念到实际应用,你将获得一份简明扼要的指南,助你理解并运用这一前沿技术。我们避开复杂的数学公式和冗长的论述,以直观的方式呈现深度学习的核心原理和应用实例。无论你是技术新手还是有经验的开发者,这篇文章都将为你打开一扇通往人工智能新世界的大门。
|
22天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的自编码器:从理论到实践
在这篇文章中,我们将深入探讨深度学习的一个重要分支——自编码器。自编码器是一种无监督学习算法,它可以学习数据的有效表示。我们将首先介绍自编码器的基本概念和工作原理,然后通过一个简单的Python代码示例来展示如何实现一个基本的自编码器。最后,我们将讨论自编码器的一些变体,如稀疏自编码器和降噪自编码器,以及它们在实际应用中的优势。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出深度学习:从理论到实践的探索之旅
在人工智能的璀璨星空中,深度学习如同一颗耀眼的新星,以其强大的数据处理能力引领着技术革新的浪潮。本文将带您走进深度学习的核心概念,揭示其背后的数学原理,并通过实际案例展示如何应用深度学习模型解决现实世界的问题。无论您是初学者还是有一定基础的开发者,这篇文章都将为您提供宝贵的知识和启发。
52 5
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
174 7
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
76 5
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
深入探索深度学习中的兼容性函数:从原理到实践
深入探索深度学习中的兼容性函数:从原理到实践
38 3