机器学习系列(4)_数据分析之Kaggle鸢尾花iris(上)

简介: 已知鸢尾花iris分为三个不同的类型:山鸢尾花Setosa、变色鸢尾花Versicolor、韦尔吉尼娅鸢尾花Virginica,这个分类主要是依据鸢尾花的花萼长度、宽度和花瓣的长度、宽度四个指标(也可能还有其他参考)。我们并不知道具体的分类标准,但是植物学家已经为150朵不同的鸢尾花进行了分类鉴定,我们也可以对每一朵鸢尾花进行准确测量得到花萼花瓣的数据。

30f18a7b0e014b2f839579dd1cb1b3db.png

我们要解决的问题如下:


已知鸢尾花iris分为三个不同的类型:山鸢尾花Setosa、变色鸢尾花Versicolor、韦尔吉尼娅鸢尾花Virginica,这个分类主要是依据鸢尾花的花萼长度、宽度和花瓣的长度、宽度四个指标(也可能还有其他参考)。我们并不知道具体的分类标准,但是植物学家已经为150朵不同的鸢尾花进行了分类鉴定,我们也可以对每一朵鸢尾花进行准确测量得到花萼花瓣的数据。


那么问题来了,你女朋友家的一株鸢尾花开花了,她测量了一下,花萼长宽花瓣长宽分别是3.1、2.3、1.2、0.5,然后她就问你:“我家这朵鸢尾花到底属于哪个分类?”


一、检查数据



数据格式有无问题?
数据数值有无问题?
数据是否需要修复和删除?

1204691e2eb44dd99cf83ab20ab39964.png

表格说明:横行属于一朵花的数据
Sepal length/width:花萼的长度/宽度数据
Petal length/width:花瓣的长度/宽度数据
class:植物学家鉴定的花的类型
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
from datetime import datetime
plt.figure(figsize=(16,10))
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.charts import Bar
import os
from pyecharts.options.global_options import ThemeType
iris_data=pd.read_csv("iris.csv",na_values='NA') # na_values:在读取的时候直接将空值赋值为NA
iris_data.head()
# 使用pairpoint进行检查,看看原始的数据是否有问题
sns.pairplot(iris_data.dropna())

9f13f7a120984f038d880e269fd9f7e7.png

sns.pairplot(iris_data.dropna(),hue='class')# hue='class' 按照class进行分类

image.png


二、清理数据



# 3 对数据进行修正
cond=(iris_data['class']=='Iris-setosa') & (iris_data['sepal_width']<2.5)
iris_data.loc[cond]
iris_data.loc[iris_data['class']=='versicolor','class']='Iris-versicolor'
iris_data.loc[iris_data['class']=='Iris-setossa','class']='Iris-setosa'
sns.pairplot(iris_data.dropna(),hue='class')


此时经过修正完之后,就只有三类数据了

image.png


显示图片:

from PIL import Image
img = Image.open('test.jpg')
plt.imshow(img)
plt.show()

image.png


1、对缺失值NAN进行修正


# 对缺失值NAN进行修正(找出所有字段的缺失值)
iris_data.loc[
    (iris_data['sepal_width'].isnull()) |
    (iris_data['sepal_length'].isnull()) |
    (iris_data['petal_width'].isnull()) |
    (iris_data['petal_length'].isnull())   
]

找到的异常值:

image.png

# 使用mean均值对nan进行替换
irissetosa=iris_data['class']=='Iris-setosa'
irissetosa
avgpetalwd=iris_data.loc[irissetosa,'petal_width'].mean()
avgpetalwd
iris_data.loc[irissetosa & (iris_data['petal_width'].isnull()),'petal_width']=avgpetalwd

image.png



2、对sepal_width异常数据进行纠正


image.png

分析:有图中该异常点的颜色可知,该数据是属于Iris-setosa,找到异常数据之后,填充为均值即可。

image.png


通过切片方式找到这个异常点:

cond=(iris_data['class']=='Iris-setosa') & (iris_data['sepal_width']<2.0)
iris_data.loc[cond]

image.png

接下来寻找sepal_width的均值:


image.png

对异常值赋值为均值:

iris_data.loc[irissetosa & (cond),'sepal_width']=avgpetalwd

此时就没有异常数据了:

image.png

在来看看图片,如下图,异常点就消失了:

98fba2d350f546259a160fc57c9e3a9e.png


相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
83 2
|
19天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
38 2
|
1月前
|
机器学习/深度学习 算法 数据挖掘
从零到精通:Scikit-learn在手,数据分析与机器学习模型评估不再难!
【10月更文挑战第4天】在数据科学领域,模型评估是连接理论与实践的桥梁,帮助我们理解模型在未知数据上的表现。对于初学者而言,众多评估指标和工具常令人困惑。幸运的是,Scikit-learn 这一强大的 Python 库使模型评估变得简单。本文通过问答形式,带你逐步掌握 Scikit-learn 的评估技巧。Scikit-learn 提供了丰富的工具,如交叉验证、评分函数(准确率、精确率、召回率、F1 分数)、混淆矩阵和 ROC 曲线等。
36 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
129 8
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
48 2
|
3月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
90 2
|
3月前
|
机器学习/深度学习 搜索推荐 数据挖掘
【深度解析】超越RMSE和MSE:揭秘更多机器学习模型性能指标,助你成为数据分析高手!
【8月更文挑战第17天】本文探讨机器学习模型评估中的关键性能指标。从均方误差(MSE)和均方根误差(RMSE)入手,这两种指标对较大预测偏差敏感,适用于回归任务。通过示例代码展示如何计算这些指标及其它如平均绝对误差(MAE)和决定系数(R²)。此外,文章还介绍了分类任务中的准确率、精确率、召回率和F1分数,并通过实例说明这些指标的计算方法。最后,强调根据应用场景选择合适的性能指标的重要性。
422 0
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
77 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
169 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
84 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析