史上最全的Java容器集合之ConcurrentHashMap(源码解读)(下)

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 前言文本已收录至我的GitHub仓库,欢迎Star:github.com/bin39232820…种一棵树最好的时间是十年前,其次是现在

成员方法


ConcurrentHashMap#initTable()


再我们put方法中,首先会判断我们存放数据的table是否为null如果为null,这个时候就要初始化我们的方法了

private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)// sizeCtl < 0 标示有其他线程正在进行初始化操作,把线程让出cpu,对于table的厨师操作,只能有一个线程在进行
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {    //如果把sizeCtl原子更新为-1成功,则当前线程进入初始化
            // 如果原子更新失败则说明有其它线程先一步进入初始化了,则进入下一次循环
            // 如果下一次循环时还没初始化完毕,则sizeCtl<0进入上面if的逻辑让出CPU
            // 如果下一次循环更新完毕了,则table.length!=0,退出循环
                try {<br>                    // 为什么还要判断,因为:如果走到下面的finally改变了sizeCtl值,有可能其他线程是会进入这个逻辑的
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY; // 默认大小是16
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2); // 0.75*n,下一次扩容阈值
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }
复制代码


再这个初始化过程中,就已经有乐观锁的实现了。 可以看出table的初始化在一个cas方法中进行,当table为null或者长度为0时进入while方法。

进入之后判断sizeCtl的指,如果小于0则线程让步。由于初始状态sizeCtl是等于0的,说明前面已经有线程进入了elseif这部分,将sc的值置为-1,表示正在初始化。

如果sc大于0,则取sc,否则取默认容量16。然后计算下一次元素数量达到多少时需要resize。总结一下初始化方法、


  • 如果sizeCtl小于0,说明别的数组正在进行初始化,则让出执行权
  • 如果sizeCtl大于0的话,则初始化一个大小为sizeCtl的数组
  • 否则的话初始化一个默认大小(16)的数组
  • 然后设置sizeCtl的值为数组长度的3/4

ConcurrentHashMap#transfer(Node<K, V>[],Node<K, V>)



该方法的目的是实现数组的转移,即ConcurrentHashMap的扩容逻辑。就是HashMap的resize方法

在ConcurrentHashMap中,扩容虽然和HashMap一样,将Node数组的长度变为原来的两倍,但是为了保证多线程的同步性,ConcurrentHashMap引入了nextTable属性。在扩容过程中,大致可以分为三步:

  • 初始化一个空数组nextTable,长度为node数组的两倍,用作扩容后的数组的临时存储。
  • 将原来的node数组复制到nextTable中。
  • 将nextTable赋给原来的Node数组,并将nextTable置为null,修改sizeCtl。

ConcurrentHashMap通过遍历实现数组的复制,根据数组中Node节点的类型不同做不同处理。 - (1)普通Node类型,表示链表中的节点,根据其下标i放入对应的nextTable中i和n+i的位置,采用头插法,链表顺序与原来相反 - (2)

ForwardingNode类型,表示已经处理过 - (3)TreeBin类型,表示红黑树的节点,进行红黑树的复制,并考虑是否需要去树化。 - (4)null,表示此处没有节点,加入ForwardingNode节点。根据上面的ConcurrentHashMap#helpTransfer(Node<K,V>[], Node<K,V>)可以知道,ForwardingNode类型的节点会触发其它线程加入数组的复制过程,即并发扩容。 另外,ConcurrentHashMap复制数组时的遍历是从n到0进行遍历的,并且不会完全遍历,而是按照线程数量分成若干个小人物,每个线程每次负责复制stride(步进)个桶([transfer-stride, transfer-1])。任务完成后可以再次申请。


stride根据cpu数量而定,最小为16。

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    //确定stride
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    if (nextTab == null) {            // initiating 
    //初始化,即使多个线程同时进入,也只不过是创建了多个Node<K,V>[]数组nt,在赋值给nextTab时后者覆盖前者,线程必然安全
        try {
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    int nextn = nextTab.length;
    //数组元素复制结束的标志位
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    //advance表示该节点是否处理成功,处理成功后继续遍历,否则该节点再次处理(CAS)
    boolean advance = true;
    //循环是否接受的标志
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
              //数组复制结束后的操作
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1); 原数组长度的1.75倍,即扩容后的0.75倍
                return;
            }
             //利用CAS方法更新sizeCtl,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作  
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
         //如果遍历到的节点为空 则放入ForwardingNode指针  
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        //如果遍历到ForwardingNode节点  说明这个点已经被处理过了 直接跳过
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
          //synchronized锁保证节点复制的线程安全
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    //链表节点,头插法得到ln和hn两条链表,分别对应nextTable中下标i和n+i的元素
                    if (fh >= 0) {
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    //红黑树节点,先尾插法得到由TreeNode组成的ln和hn两条链表,分别对应nextTable中下标i和n+i的元素,然后作为参数传入TreeBin的构造方法
                    else if (f instanceof TreeBin) {
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}
复制代码



我只能说复杂的一批。扩容是最复杂的,多线程的数据复制,还有红黑树的转换。脑子不够用。大神们去探究吧,我就记记结论吧


put方法

单纯的put方法

/*
     *    单纯的额调用putVal方法,并且putVal的第三个参数设置为false
     *  当设置为false的时候表示这个value一定会设置
     *  true的时候,只有当这个key的value为空的时候才会设置
     */
    public V put(K key, V value) {
        return putVal(key, value, false);
    }
复制代码


 再来看putVal    

final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();//K,V都不能为空,否则的话跑出异常
        int hash = spread(key.hashCode());    //取得key的hash值
        int binCount = 0;    //用来计算在这个节点总共有多少个元素,用来控制扩容或者转移为树
        for (Node<K,V>[] tab = table;;) {    //
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)    
                tab = initTable();    //第一次put的时候table没有初始化,则初始化table
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {    //通过哈希计算出一个表中的位置因为n是数组的长度,所以(n-1)&hash肯定不会出现数组越界
                if (casTabAt(tab, i, null,        //如果这个位置没有元素的话,则通过cas的方式尝试添加,注意这个时候是没有加锁的
                             new Node<K,V>(hash, key, value, null)))        //创建一个Node添加到数组中区,null表示的是下一个节点为空
                    break;                   // no lock when adding to empty bin
            }
            /*
             * 如果检测到某个节点的hash值是MOVED,则表示正在进行数组扩张的数据复制阶段,
             * 则当前线程也会参与去复制,通过允许多线程复制的功能,一次来减少数组的复制所带来的性能损失
             */
            else if ((fh = f.hash) == MOVED)    
                tab = helpTransfer(tab, f);
            else {
                /*
                 * 如果在这个位置有元素的话,就采用synchronized的方式加锁,
                 *     如果是链表的话(hash大于0),就对这个链表的所有元素进行遍历,
                 *         如果找到了key和key的hash值都一样的节点,则把它的值替换到
                 *         如果没找到的话,则添加在链表的最后面
                 *  否则,是树的话,则调用putTreeVal方法添加到树中去
                 *  
                 *  在添加完之后,会对该节点上关联的的数目进行判断,
                 *  如果在8个以上的话,则会调用treeifyBin方法,来尝试转化为树,或者是扩容
                 */
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {        //再次取出要存储的位置的元素,跟前面取出来的比较
                        if (fh >= 0) {                //取出来的元素的hash值大于0,当转换为树之后,hash值为-2
                            binCount = 1;            
                            for (Node<K,V> e = f;; ++binCount) {    //遍历这个链表
                                K ek;
                                if (e.hash == hash &&        //要存的元素的hash,key跟要存储的位置的节点的相同的时候,替换掉该节点的value即可
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)        //当使用putIfAbsent的时候,只有在这个key没有设置值得时候才设置
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {    //如果不是同样的hash,同样的key的时候,则判断该节点的下一个节点是否为空,
                                    pred.next = new Node<K,V>(hash, key,        //为空的话把这个要加入的节点设置为当前节点的下一个节点
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {    //表示已经转化成红黑树类型了
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,    //调用putTreeVal方法,将该元素添加到树中去
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)    //当在同一个节点的数目达到8个的时候,则扩张数组或将给节点的数据转为tree
                        treeifyBin(tab, i);    
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);    //计数
        return null;
    }
复制代码


我们来总结一下put方法

  • 第一步,一进去肯定判断key value是否为null 如果为null 抛出异常
  • 第二步,当添加一对键值对的时候,首先会去判断保存这些键值对的数组是不是初始化了,如果没有就初始化数组。
  • 第三步, 通过计算hash值来确定放在数组的哪个位置如果这个位置为空则直接添加(CAS的加锁方式),如果不为空的话,则取出这个节点来
  • 第四步,如果取出来的节点的hash值是MOVED(-1)的话,则表示当前正在对这个数组进行扩容,复制到新的数组,则当前线程也去帮助复制
  • 第五步,如果这个节点,不为空,也不在扩容,则通过synchronized来加锁,进行添加操作
  • 第六步,如果是链表的话,则遍历整个链表,直到取出来的节点的key来个要放的key进行比较,如果key相等,并且key的hash值也相等的话,则说明是同一个key,则覆盖掉value,否则的话则添加到链表的末尾
  • 第七步,如果是树的话,则调用putTreeVal方法把这个元素添加到树中去
  • 第八步,最后在添加完成之后,会判断在该节点处共有多少个节点(注意是添加前的个数),如果达到8个以上了的话,则调用treeifyBin方法来尝试将处的链表转为树,或者扩容数

get方法


concurrentHashMap的get操作的流程很简单,可以分为三个步骤来描述:

  • 计算hash值,定位到该table索引位置,如果是首节点符合就返回。
  • 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回。
  • 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode()); //计算两次hash
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素
        if ((eh = e.hash) == h) { //如果该节点就是首节点就返回
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来
        //查找,查找到就返回
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
复制代码


size方法

对于size的计算,在扩容和addCount()方法就已经有处理了,可以注意一下Put函数,里面就有addCount()函数,早就计算好的,然后你size的时候直接给你.

public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 :
            (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
            (int)n);
}
final long sumCount() {
    CounterCell[] as = counterCells; CounterCell a; //变化的数量
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}
复制代码


Unsafe与CAS

在ConcurrentHashMap中,随处可以看到U, 大量使用了U.compareAndSwapXXX的方法,这个方法是利用一个CAS算法实现无锁化的修改值的操作,他可以大大降低锁代理的性能消耗。这个算法的基本思想就是不断地去比较当前内存中的变量值与你指定的一个变量值是否相等,如果相等,则接受你指定的修改的值,否则拒绝你的操作。因为当前线程中的值已经不是最新的值,你的修改很可能会覆盖掉其他线程修改的结果。这一点与乐观锁,SVN的思想是比较类似的。

unsafe代码块控制了一些属性的修改工作,比如最常用的SIZECTL 。  在这一版本的concurrentHashMap中,大量应用来的CAS方法进行变量、属性的修改工作。  利用CAS进行无锁操作,可以大大提高性能。

private static final sun.misc.Unsafe U;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    private static final long ABASE;
    private static final int ASHIFT;
    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class<?> k = ConcurrentHashMap.class;
            SIZECTL = U.objectFieldOffset
                (k.getDeclaredField("sizeCtl"));
            TRANSFERINDEX = U.objectFieldOffset
                (k.getDeclaredField("transferIndex"));
            BASECOUNT = U.objectFieldOffset
                (k.getDeclaredField("baseCount"));
            CELLSBUSY = U.objectFieldOffset
                (k.getDeclaredField("cellsBusy"));
            Class<?> ck = CounterCell.class;
            CELLVALUE = U.objectFieldOffset
                (ck.getDeclaredField("value"));
            Class<?> ak = Node[].class;
            ABASE = U.arrayBaseOffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale & (scale - 1)) != 0)
                throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
        } catch (Exception e) {
            throw new Error(e);
        }
    }
复制代码


ConcurrentHashMap定义了三个原子操作,用于对指定位置的节点进行操作。正是这些原子操作保证了ConcurrentHashMap的线程安全。

@SuppressWarnings("unchecked")
    //获得在i位置上的Node节点
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }
    //利用CAS算法设置i位置上的Node节点。之所以能实现并发是因为他指定了原来这个节点的值是多少
    //在CAS算法中,会比较内存中的值与你指定的这个值是否相等,如果相等才接受你的修改,否则拒绝你的修改
    //因此当前线程中的值并不是最新的值,这种修改可能会覆盖掉其他线程的修改结果  有点类似于SVN
    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                        Node<K,V> c, Node<K,V> 
                                        v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }
    //利用volatile方法设置节点位置的值
    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
    }
复制代码


总结


HashMap、Hashtable、ConccurentHashMap三者的区别

  • HashMap线程不安全,数组+链表+红黑树
  • Hashtable线程安全,锁住整个对象,数组+链表
  • ConccurentHashMap线程安全,CAS+同步锁,数组+链表+红黑树
  • HashMap的key,value均可为null,其他两个不行。


在JDK1.7和JDK1.8中的区别

在JDK1.8主要设计上的改进有以下几点:

  1. 不采用segment而采用node,锁住node来实现减小锁粒度。
  2. 设计了MOVED状态 当resize的中过程中 线程2还在put数据,线程2会帮助resize。
  3. 使用3个CAS操作来确保node的一些操作的原子性,这种方式代替了锁。
  4. sizeCtl的不同值来代表不同含义,起到了控制的作用。

采用synchronized而不是ReentrantLock


版本说明

  • 这里的源码是JDK8版本,不同版本可能会有所差异,但是基本原理都是一样的。

因为博主也是一个开发萌新 我也是一边学一边写 我有个目标就是一周 二到三篇 希望能坚持个一年吧 希望各位大佬多提意见,让我多学习,一起进步。

相关文章
|
27天前
|
存储 Java
深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。
【10月更文挑战第16天】本文深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。HashSet基于哈希表实现,添加元素时根据哈希值分布,遍历时顺序不可预测;而TreeSet利用红黑树结构,按自然顺序或自定义顺序存储元素,确保遍历时有序输出。文章还提供了示例代码,帮助读者更好地理解这两种集合类型的使用场景和内部机制。
37 3
|
7天前
|
Java
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式。本文介绍了 Streams 的基本概念和使用方法,包括创建 Streams、中间操作和终端操作,并通过多个案例详细解析了过滤、映射、归并、排序、分组和并行处理等操作,帮助读者更好地理解和掌握这一重要特性。
14 2
|
6天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
11天前
|
存储 Java
判断一个元素是否在 Java 中的 Set 集合中
【10月更文挑战第30天】使用`contains()`方法可以方便快捷地判断一个元素是否在Java中的`Set`集合中,但对于自定义对象,需要注意重写`equals()`方法以确保正确的判断结果,同时根据具体的性能需求选择合适的`Set`实现类。
|
11天前
|
存储 Java 开发者
在 Java 中,如何遍历一个 Set 集合?
【10月更文挑战第30天】开发者可以根据具体的需求和代码风格选择合适的遍历方式。增强for循环简洁直观,适用于大多数简单的遍历场景;迭代器则更加灵活,可在遍历过程中进行更多复杂的操作;而Lambda表达式和`forEach`方法则提供了一种更简洁的函数式编程风格的遍历方式。
|
11天前
|
Java 开发者
|
23天前
|
安全 Java 程序员
深入Java集合框架:解密List的Fail-Fast与Fail-Safe机制
本文介绍了 Java 中 List 的遍历和删除操作,重点讨论了快速失败(fail-fast)和安全失败(fail-safe)机制。通过普通 for 循环、迭代器和 foreach 循环的对比,详细解释了各种方法的优缺点及适用场景,特别是在多线程环境下的表现。最后推荐了适合高并发场景的 fail-safe 容器,如 CopyOnWriteArrayList 和 ConcurrentHashMap。
52 5
|
24天前
|
安全 Java 程序员
Java集合之战:ArrayList vs LinkedList,谁才是你的最佳选择?
本文介绍了 Java 中常用的两个集合类 ArrayList 和 LinkedList,分析了它们的底层实现、特点及适用场景。ArrayList 基于数组,适合频繁查询;LinkedList 基于链表,适合频繁增删。文章还讨论了如何实现线程安全,推荐使用 CopyOnWriteArrayList 来提升性能。希望帮助读者选择合适的数据结构,写出更高效的代码。
48 3
|
11天前
|
存储 Java 开发者
Java中的集合框架深入解析
【10月更文挑战第32天】本文旨在为读者揭开Java集合框架的神秘面纱,通过深入浅出的方式介绍其内部结构与运作机制。我们将从集合框架的设计哲学出发,探讨其如何影响我们的编程实践,并配以代码示例,展示如何在真实场景中应用这些知识。无论你是Java新手还是资深开发者,这篇文章都将为你提供新的视角和实用技巧。
11 0
|
16天前
|
Java API Apache
java集合的组内平均值怎么计算
通过本文的介绍,我们了解了在Java中计算集合的组内平均值的几种方法。每种方法都有其优缺点,具体选择哪种方法应根据实际需求和场景决定。无论是使用传统的循环方法,还是利用Java 8的Stream API,亦或是使用第三方库(如Apache Commons Collections和Guava),都可以有效地计算集合的组内平均值。希望本文对您理解和实现Java中的集合平均值计算有所帮助。
23 0