Pytorch 中怎么计算网络的参数量

简介: 本博文以 Dense Block 为例,Pytorch 为 DL 框架,最终计算模块参数量方法如下:

本博文以 Dense Block 为例,Pytorch 为 DL 框架,最终计算模块参数量方法如下:

import torch
import torch.nn as nn
class Norm_Conv(nn.Module):
    def __init__(self,in_channel):
        super(Norm_Conv,self).__init__()
        self.layers = nn.Sequential(
            nn.Conv2d(in_channel,in_channel,3,1,1),
            nn.ReLU(True),
            nn.BatchNorm2d(in_channel),
            nn.Conv2d(in_channel,in_channel,3,1,1),
            nn.ReLU(True),
            nn.BatchNorm2d(in_channel),
            nn.Conv2d(in_channel,in_channel,3,1,1),
            nn.ReLU(True),
            nn.BatchNorm2d(in_channel))
    def forward(self,input):
        out = self.layers(input)
        return out
class DenseBlock_Norm(nn.Module):
    def __init__(self,in_channel):
        super(DenseBlock_Norm,self).__init__()
        self.first_layer = nn.Sequential(nn.Conv2d(in_channel,in_channel,3,1,1),
                                        nn.ReLU(True),
                                        nn.BatchNorm2d(in_channel))
        self.second_layer = nn.Sequential(nn.Conv2d(in_channel*2,in_channel,3,1,1),
                                          nn.ReLU(True),
                                          nn.BatchNorm2d(in_channel))
        self.third_layer = nn.Sequential(
            nn.Conv2d(in_channel*3,in_channel,3,1,1),
            nn.ReLU(True),
            nn.BatchNorm2d(in_channel))
    def forward(self,input):
        output1 = self.first_layer(input)
        output2 = self.second_layer(torch.cat((output1,input),dim=1))
        output3 = self.third_layer(torch.cat((input,output1,output2),dim=1))
        return output3
def count_param(model):
    param_count = 0
    for param in model.parameters():
        param_count += param.view(-1).size()[0]
    return param_count
# Get Parameter number of Network
in_channel = 128
net1 = Norm_Conv(in_channel)
print('Norm Conv parameter count is {}'.format(count_param(net1)))
net2 = DenseBlock_Norm(in_channel)
print('DenseBlock Norm parameter count is {}'.format(count_param(net2)))

最终结果如下

Norm Conv parameter count is 443520
DenseBlock Norm parameter count is 885888
相关文章
|
3天前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
145 65
|
27天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
126 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
1月前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
78 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
5月前
|
机器学习/深度学习
神经网络各种层的输入输出尺寸计算
神经网络各种层的输入输出尺寸计算
365 1
|
1月前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
3月前
|
存储 缓存 算法
|
3月前
|
存储
|
3月前
|
存储 并行计算 PyTorch
探索PyTorch:张量数值计算
探索PyTorch:张量数值计算
|
3月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
63 0
|
4月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。