秒杀组合、排列与子集(回溯算法)

简介: 秒杀组合、排列与子集(回溯算法)

写在前



先看一下回溯算法的套路模板,参考这里。


解决一个回溯问题,实际上就是一个【决策树的遍历过程】。你需要考虑三个问题:


  1. 路径:即已经做出的选择
  2. 选择列表:即当前还可以做出的选择
  3. 结束条件:到达决策树的底层,无法再做出选择条件


回溯的框架(伪代码)

result = []
void backtrack(路径, 选择列表):
    if 满足结束条件:
        result.add(路径)
        return  // 避免栈溢出
    for 选择 in 选择列表:
        做选择
        backtrack(路径, 选择列表)
        撤销选择


框架的核心思想:for循环里边的递归,在递归调用之前做出选择,在递归调用之后撤销选择。


我们定义的 backtrack 函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层,其「路径」就是一个全排列


但是必须说明的是,不管怎么优化,都符合回溯框架,而且时间复杂度都不可能低于 O(N!),因为穷举整棵决策树是无法避免的。这也是回溯算法的一个特点,不像动态规划存在重叠子问题可以优化,回溯算法就是纯暴力穷举,复杂度一般都很高


注意:但是可以根据情况进行剪枝减小时间复杂度。


1.组合总和(39-中)



题目概述:给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。注意:candidates 中的数字可以无限制重复被选取!!


示例

输入:candidates = [2,3,6,7], target = 7,
所求解集为:
[
  [7],
  [2,2,3]
]


思路分析:同一元素可以使用多次(start定义可选择列表的起点),所以我们进入递归不能直接进入下一个元素,而是更新状态值,直到达到底层;注:相同数字不同排列视为一个结果!如[[1], [2]]和[[2], [1]]


保证当前已选列表(ramain)三种状态:


  • 当前路径不满足,直接返回(注意判断,remain小于0,剪枝)
  • 到达底层,且满足,记录路径
  • 路径继续搜索,进入for循环【做选择,递归(注意元素可重复选择),撤销选择】


代码

private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> combinationSum(int[] candidates, int target){
    backTrack(candidates, new ArrayList<>(), target, 0);
    return ans;
}
private void backTrack(int[] candidates, List<Integer> list, int remain, int start) {
    // 剪枝
    if (remain < 0) return;
    else if (remain == 0) ans.add(new ArrayList<>(list));
    else {
        for (int i = start; i < candidates.length; ++i) {
            list.add(candidates[i]);
            backTrack(candidates, list, remain - candidates[i], i);
            list.remove(list.size() - 1);
        }
    }
}


2.组合(77-中)



题目概述:定两个整数 nk,返回 1 ... n 中所有可能的 k 个数的组合,即相当于寻找数组[1, 2, ... n]的子数组,子数组大小为k。


注意:一个可能的结果中必须保证元素唯一性,即不能出现[1, 1]这种情况。


示例

输入: n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]


思路分析:本题使用框架可以求解。与上题不同的是:一个元素只能用一次,且k为数组的个数,但是任然可以用dfs,终止条件是k = 0。


优化思路:更新搜索起点的上界。例如:如果 n = 7, k = 4,从 5 开始搜索就已经没有意义了,这是因为:即使把 5 选上,后面的数只有 6 和 7,一共就 3 个候选数,凑不出 4 个数的组合。推导如下:

(1)搜索起点的上界 + 接下来要选择的元素个数 - 1 = n
(2)接下来要选择的元素个数 = k - list.size()
(3)搜索起点的上界:n - (k - list.size()) + 1


注意:起始位置是1,回溯的终止位置是n,都是闭区间。


代码

private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> combine(int n, int k) {
    backTrack(n, new ArrayList<>(), k, 1);
    return ans;
}
private void backTrack(int n, List<Integer> list, int k, int start) {
    if (k == 0) {
        ans.add(new ArrayList<>(list));
        return;
    }
    for (int i = start; i <= n; ++i) {
        list.add(i);
        backTrack(n, list, k - 1, i + 1);
        list.remove(list.size() - 1);
    }
}
// 剪枝优化后的回溯代码
private void backTrack(int n, List<Integer> list, int k, int start) {
    if (k == list.size()) {
        ans.add(new ArrayList<>(list));
        return;
    }
    // 遍历搜索的起点位置(即起点上界)
    for (int i = start; i <= n - (k - list.size()) + 1; ++i) {
        list.add(i);
        backTrack(n, list, k, i + 1);
        list.remove(list.size() - 1);
    }
}


3.组合总和II(40-中)



题目概述:给定一个数组 candidates含有重复元素!!)和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次!!


说明:


  • 所有数字(包括目标数)都是正整数。
  • 解集不能包含重复的组合。


示例

输入: candidates = [10,1,2,7,6,1,5], target = 8,
所求解集为:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]


思路分析:与39题不同是:同一元素只用一次(start定义可选择列表的起点)但数组中含有相同元素;相同点是:相同数字列表的不同排列视为一个结果,如[[1], [2]]和[[2], [1]]


本题关键是如何去掉结果的重复元素(由于数组中含有重复元素造成)。由于含有重复元素,我们要对数组进行排序,这很重要!去重有两种解决方案:


  • 方案1:使用Set去重,由于底层是红黑树,效率过低。
  • 方案2:通过索引确定重复元素,当前遍历索引大于起始可选列表,且元素相等(重复元素)!


代码实现:方案2

private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
    // 一定要先排序!
    Arrays.sort(candidates);
    backTrack(candidates, new ArrayList<>(), target, 0);
    return new ArrayList<>(ans);
}
private void backTrack(int[] candidates, List<Integer> list, int remain, int start) {
    if (remain < 0) return;
    else if (remain == 0) {
        ans.add(new ArrayList<>(list));
        return;
    } else {
        for (int i = start; i < candidates.length; ++i) {
            // 利用索引去重
            if (i > start && candidates[i] == candidates[i - 1]) continue;
            list.add(candidates[i]);
            backTrack(candidates, list, remain - candidates[i], i + 1);
            list.remove(list.size() - 1);
        }
    }
}


4.组合总和III(216-中)



题目概述:找出所有相加之和为 n 的 k个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。组合中元素唯一!


说明:


  • 所有数字都是正整数。
  • 解集不能包含重复的组合。


示例

输入: k = 3, n = 7
输出: [[1,2,4]]


思路分析:该问题综合了前两个组合问题(重点),注意三点:


  • 子数组含有k个元素,累加和为n,所以终止条件必须满足这两条!
  • 数组元素唯一(1-9的整数),所以下一层递归的起始位置i + 1,数组内总长度为9,初始值为1,都是闭区间;
  • 剪枝优化:(1)累加和remain<0,剪枝(2)剩余元素的个数不满足使用,剪枝!


代码

private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
    int num = 9;
    backTrack(num, new ArrayList<>(), n, 1, k);
    return ans;
}
private void backTrack(int num, List<Integer> list, int remain, int start, int k) {
    if (remain < 0) return;
    else if (remain == 0 && k == list.size()) {
        ans.add(new ArrayList<>(list));
        return;
    }
    // 剩余k - list.size()需要填充
    for (int i = start; i <= num - (k - list.size()) + 1; ++i) {
        list.add(i);
        backTrack(num, list, remain - i, i + 1, k);
        list.remove(list.size() - 1);
    }
}


5.全排列(46-中)



题目概述:给定一个 没有重复 数字的序列,返回其所有可能的全排列。


示例

输入: [1,2,3]
输出:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]


思路分析:与组合问题不同,一般解法如方案1,全排列起始位置是0。


方案1:在搜索得到所有排列的时候,需要记录当前排列已经选了哪些元素,需要数组记录一下,出递归需要将这个元素恢复


方案2:比较巧妙,通过以每个位置作start为起点,进递归前交换数组元素,出递归恢复数组。每次固定一个元素,当start到达数组末尾时,我们得到排列的一种组合,遍历获取即可。效率比较高!


代码

// 方案1
private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> permute(int[] nums){
    int n = nums.length;
    boolean[] used = new boolean[n];
    backTrack(nums, new ArrayList<>(), used);
    return ans;
}
private void backTrack(int[] nums, List<Integer> path, boolean[] used) {
    if (path.size() == nums.length) {
        ans.add(new ArrayList<>(path));
        return;
    }
    // 在还未选择的数中选一个,作为排列的下一个值
    for (int i = 0; i < nums.length; ++i) {
        if (!used[i]) {
            path.add(nums[i]);
            used[i] = true;
            backTrack(nums, path, used);
            used[i] = false;
            path.remove(path.size() - 1);
        }
    }
}
// 方案2:特别注意for循环的起始位置和起始位置的变动!
private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> permute(int[] nums){
    backTrack(nums, 0);
    return ans;
}
private void backTrack(int[] nums, int start) {
    if (start == nums.length) {
        List<Integer> list = new ArrayList<>(); 
        for (int i : nums) {
            list.add(i);
        }
        ans.add(list);
        return;
    }
    for (int i = start; i < nums.length; i++) {
        swap(nums, i, start);
        backTrack(nums, start + 1);
        swap(nums, i, start);
    }
}
private void swap(int[] nums, int i, int j) {
    int temp = nums[i];
    nums[i] = nums[j];
    nums[j] = temp;
}


拓展(T60):排序序列,给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。


按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

"123"
"132"
"213"
"231"
"312"
"321"
如:
输入:n = 3, k = 3
输出:"213"


给定 n 和 k,返回第 k 个排列。


思路:待补充。。。


6.全排列II(47-中)



题目概述:给定一个可包含重复数字的序列 nums按任意顺序 返回所有不重复的全排列。


示例

输入:nums = [1,1,2]
输出:
[[1,1,2],
 [1,2,1],
 [2,1,1]]


思路分析:与T46实现思路相同,不同点是数组含有重复元素。关键还是如何去重!


  • 方案1:直接在加入判断是否出现过,没出现加入,效率极低。
  • 方案2:先排序(前提),然后进行剪枝,比如112, 第一个1使用然后被撤销,剪的就是这部分。所以!used(i - 1),i - 1被撤销过,且没被使用,剪枝。
  • 方案3:使用hashset保存当前要交换的位置已经有过哪些元素了,如果存在(元素相同,索引不同)直接跳过。


代码

// 方案2
private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums){
    int n = nums.length;
    boolean[] used = new boolean[n];
    // 排序是前提
    Arrays.sort(nums);
    backTrack(nums, new ArrayList<>(), used);
    return ans;
}
private void backTrack(int[] nums, List<Integer> path, boolean[] used) {
    if (path.size() == nums.length) {
        if (!ans.contains(path)) {
            ans.add(new ArrayList<>(path));
            return;
        }
    }
    // 在还未选择的数中选一个,作为排列的下一个值
    for (int i = 0; i < nums.length; ++i) {
        if (used[i]) {
            continue;
        }
        if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
            continue;
        }
        path.add(nums[i]);
        used[i] = true;
        backTrack(nums, path, used);
        used[i] = false;
        path.remove(path.size() - 1);
    }
}
// 方案3
private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums){
    Arrays.sort(nums);
    backTrack(nums, 0);
    return ans;
}
private void backTrack(int[] nums, int start) {
    if (start == nums.length) {
        List<Integer> list = new ArrayList<>(); 
        for (int i : nums) {
            list.add(i);
        }
        ans.add(list);
        return;
    }
    HashSet<Integer> set = new HashSet<>();
    for (int i = start; i < nums.length; i++) {
        // 具有相同值的索引不交换,直接跳过
        if (set.contains(nums[i])) continue;
        set.add(nums[i]);
        swap(nums, i, start);
        backTrack(nums, start + 1);
        swap(nums, i, start);
    }
}
private void swap(int[] nums, int i, int j) {
    int temp = nums[i];
    nums[i] = nums[j];
    nums[j] = temp;
}


7.子集(78-中)



题目概述:给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。解集 不能 包含重复的子集!你可以按 任意顺序 返回解集。


示例

输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]


思路分析:本题可以直接套用模板,每个元素只能使用一次!


注意:没有边界条件,直接添加到结果(任意一个都可能是子集,包括空集)。


代码

private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> subsets(int[] nums) {
    backTrack(nums, new ArrayList<>(), 0);
    return ans;
}
private void backTrack(int[] nums, List<Integer> list, int start) {
    ans.add(new ArrayList<>(list));
    for (int i = start; i < nums.length; ++i) {
        list.add(nums[i]);
        backTrack(nums, list, i + 1);
        list.remove(list.size() - 1);
    }
}


8.子集II(90-中)



题目概述:给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。但解集不能包含重复的子集。


示例

输入: [1,2,2]
输出:
[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]


思路分析:本题与T78思路相同,但含有重复元素。关键是去重,这里采用T40的去重方法。注意:排序是去重的前提!


代码

private List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
    Arrays.sort(nums);
    backTrack(nums, new ArrayList<>(), 0);
    return ans;
}
private void backTrack(int[] nums, List<Integer> list, int start) {
    ans.add(new ArrayList<>(list));
    for (int i = start; i < nums.length; ++i) {
        if (i > start && nums[i] == nums[i - 1]) continue;
        list.add(nums[i]);
        backTrack(nums, list, i + 1);
        list.remove(list.size() - 1);
    }
}


总结



我们可以发现上述题目可大致分为下列几种情况:


  • 数组不含重复元素:T39组合数;T46全排列;T78子集
  • 数组中含有重复元素:T40组合数II;T47全排列II;T90子集II
  • 结果元素可重用性:不在举例说明


总结一些技巧:


  • 对于限制累加和:注意分析当前剩余值remain不同的状态,决定返回还是继续递归;
  • 对于限制子数组大小:注意在for循环优化剪枝,当剩余元素个数小于限定数组大小(剪枝),终止条件:子数组长度list.size() == 目标长度k
  • 对于含有重复元素:关键对数组进行排序Arrays.sort(),然后优化剪枝(移动无关指针),这里还要区分[组合,子集]与[排列]去重的方法;
  • 对于全排列问题:优化方案通过交换索引swap(),遍历每个排列状态(推荐);
  • 对于当前元素可重用:下次递归选择还是从当前位置i,否则从下一个位置i + 1开始。


ps:结果都必须保证相同数字列表的不同排列视为一个结果!

相关文章
|
2月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
2月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之顺序表【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找等具体详解步骤以及举例说明
|
2月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
2月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找习题精讲等具体详解步骤以及举例说明
|
2月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构的基本概念;算法的基本概念、特性以及时间复杂度、空间复杂度等举例说明;【含常见的报错问题及其对应的解决方法】
|
2月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
|
算法
”回溯算法“框架及练习题
”回溯算法“框架及练习题
48 0

热门文章

最新文章