基于Spark对某移动APP流量访问日志分析(Java版)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 笔记

需求分析


我们来根据移动设备唯一标识deviceID来计算来自客户端用户访问日志请求和响应的上行流量、下行流量的记录。


上行流量:指的是手机app向服务器发送的请求数据的流量

下行流量:指的是服务器端给手机app返回的数据(比如说图片、文字、json)的流量

1.计算每个设备(deviceID)总上行流量之和与下行流量之和(取时间戳取最小的deviceID)

eg: 
时间戳 设备号 上行流量    下行流量
1   001   79976   11496
2   001   95291   89092
3   002   57029   93467   -> LogInfo(1, 001, 79976+95291+20428, 11496+89092+57706)
4   001   20428   57706
5   003   5291    9092

2.根据上行流量和下行流量进行排序

优先根据上行流量进行排序,如果上行流量相等,那么根据下行流量排序。如果上行流量和下行流量都相当,那么就根据最早时间戳类排序,即需要二次排序)

3.获取流量最大的前10个设备


数据原型

时间戳(timeStamp)  设备号(deviceID)           上行流量  下行流量
1454307391161 77e3c9e1811d4fb291d0d9bbd456bb4b  79976 11496
1454315971161 f92ecf8e076d44b89f2d070fb1df7197  95291 89092
1454304331161 3de7d6514f1d4ac790c630fa63d8d0be  57029 50228
1454303131161 dd382d2a20464a74bbb7414e429ae452  20428 93467
1454319991161 bb2956150d6741df875fbcca76ae9e7c  51994 57706
...

设计思路


1.自定义数据类型LogInfo(timeStamp,upTraffic,downTraffic)

2.将rdd映射成key-value方式<diviceId,LogInfo>

3.根据diviceId进行聚合,timeStamp取最小值,upTraffic为上行流量总和,downTraffic为下行流量总和

4.自定义一个键值对的比较类来实现比较,要实现Ordered接口和Serializable接口,在key中实现自己对多个列的排序算法。

5.将<diviceId, LogInfo(timeStamp,upTraffic,downTraffic)>映射成<LogSort(timeStamp,upTraffic,downTraffic),diviceId>

6.使用sortByKey算子按照自定义的key进行排序

7.使用take算子取出前n名

8.将排序过的value值打印输出

数据模型及演化过程

时间戳 设备号 上行流量    下行流量  <diviceId, LogInfo(timeStamp,upTraffic,downTraffic)>  <diviceId, LogInfo(timeStamp,upTraffic,downTraffic)>  <LogSort(timeStamp,upTraffic,downTraffic),diviceId>
1   001   10        20         <001,LogInfo(1,10,20)>
2   001   20        15         <001,LogInfo(2,20,15)>                    <001,LogInfo(1,70,55)>                <LogSort(1,70,55),001>
3   002   25        10    map() -> <002,LogInfo(3,25,10)>           reduceByKey() -> <002,LogInfo(3,25,10)>           map() -> <LogSort(3,25,10),002>           sortByKey(false) -> take(n) 
4   001   30        20         <001,LogInfo(4,30,20)>                    <003,LogInfo(5,10,20)>                <LogSort(5,10,20),003>
5   003   10        20         <003,LogInfo(5,10,20)>

1.png



实施过程


首先将SparkConf分装在一个类中

package com.kfk.spark.common;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/11/28
 * @time : 6:18 下午
 */
public class CommSparkContext {
    public static JavaSparkContext getsc(){
        SparkConf sparkConf = new SparkConf().setAppName("CommSparkContext").setMaster("local");
        return new JavaSparkContext(sparkConf);
    }
}

自定义数据类型LogInfo

package com.kfk.spark.traffic_analysis_project;
import java.io.Serializable;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/11/30
 * @time : 6:40 下午
 */
public class LogInfo implements Serializable {
    private long timeStamp;
    private long upTraffic;
    private long downTraffic;
    public long getTimeStamp() {
        return timeStamp;
    }
    public void setTimeStame(long timeStame) {
        this.timeStamp = timeStame;
    }
    public long getUpTraffic() {
        return upTraffic;
    }
    public void setUpTraffic(long upTraffic) {
        this.upTraffic = upTraffic;
    }
    public long getDownTraffic() {
        return downTraffic;
    }
    public void setDownTraffic(long downTraffic) {
        this.downTraffic = downTraffic;
    }
    public LogInfo(){
    }
    public LogInfo(long timeStame, long upTraffic, long downTraffic) {
        this.timeStamp = timeStame;
        this.upTraffic = upTraffic;
        this.downTraffic = downTraffic;
    }
}

自定义key排序类LogSort

package com.kfk.spark.traffic_analysis_project;
import scala.Serializable;
import scala.math.Ordered;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/11/30
 * @time : 7:39 下午
 */
public class LogSort extends LogInfo implements Ordered<LogSort> , Serializable {
    private long timeStamp;
    private long upTraffic;
    private long downTraffic;
    @Override
    public long getTimeStamp() {
        return timeStamp;
    }
    public void setTimeStamp(long timeStamp) {
        this.timeStamp = timeStamp;
    }
    @Override
    public long getUpTraffic() {
        return upTraffic;
    }
    @Override
    public void setUpTraffic(long upTraffic) {
        this.upTraffic = upTraffic;
    }
    @Override
    public long getDownTraffic() {
        return downTraffic;
    }
    @Override
    public void setDownTraffic(long downTraffic) {
        this.downTraffic = downTraffic;
    }
    public LogSort(){
    }
    public LogSort(long timeStamp, long upTraffic, long downTraffic) {
        this.timeStamp = timeStamp;
        this.upTraffic = upTraffic;
        this.downTraffic = downTraffic;
    }
    public int compare(LogSort that) {
        int comp = Long.valueOf(this.getUpTraffic()).compareTo(that.getUpTraffic());
        if (comp == 0){
            comp = Long.valueOf(this.getDownTraffic()).compareTo(that.getDownTraffic());
        }
        if (comp == 0){
            comp = Long.valueOf(this.getTimeStamp()).compareTo(that.getTimeStamp());
        }
        return comp;
    }
    public boolean $less(LogSort that) {
        return false;
    }
    public boolean $greater(LogSort that) {
        return false;
    }
    public boolean $less$eq(LogSort that) {
        return false;
    }
    public boolean $greater$eq(LogSort that) {
        return false;
    }
    public int compareTo(LogSort that) {
        int comp = Long.valueOf(this.getUpTraffic()).compareTo(that.getUpTraffic());
        if (comp == 0){
            comp = Long.valueOf(this.getDownTraffic()).compareTo(that.getDownTraffic());
        }
        if (comp == 0){
            comp = Long.valueOf(this.getTimeStamp()).compareTo(that.getTimeStamp());
        }
        return comp;
    }
}

编写主类LogApp

package com.kfk.spark.traffic_analysis_project;
import com.kfk.spark.common.CommSparkContext;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.List;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/11/30
 * @time : 6:36 下午
 */
public class LogApp {
    /**
     * rdd映射成key-value方式<diviceId,LogInfo>
     * rdd map() -> <diviceId,LogInfo(timeStamp,upTraffic,downTraffic)>
     * @param rdd
     * @return
     */
    public static JavaPairRDD<String,LogInfo> mapToPairValues(JavaRDD<String> rdd){
        JavaPairRDD<String,LogInfo> mapToPairRdd =  rdd.mapToPair(new PairFunction<String, String, LogInfo>() {
            public Tuple2<String, LogInfo> call(String line) throws Exception {
                long timeStamp = Long.parseLong(line.split("\t")[0]);
                String diviceId = String.valueOf(line.split("\t")[1]);
                long upTraffic = Long.parseLong(line.split("\t")[2]);
                long downTraffic = Long.parseLong(line.split("\t")[3]);
                LogInfo logInfo = new LogInfo(timeStamp,upTraffic,downTraffic);
                return new Tuple2<String, LogInfo>(diviceId,logInfo);
            }
        });
        return mapToPairRdd;
    }
    /**
     * 根据diviceId进行聚合
     * mapToPairRdd reduceByKey() -> <diviceId,LogInfo(timeStamp,upTraffic,downTraffic)>
     * @param mapPairRdd
     * @return
     */
    public static JavaPairRDD<String,LogInfo> reduceByKeyValues(JavaPairRDD<String,LogInfo> mapPairRdd){
        JavaPairRDD<String,LogInfo> reduceByKeyRdd = mapPairRdd.reduceByKey(new Function2<LogInfo, LogInfo, LogInfo>() {
            public LogInfo call(LogInfo v1, LogInfo v2) throws Exception {
                long timeStamp = Math.min(v1.getTimeStamp(), v2.getTimeStamp());
                long upTraffic = v1.getUpTraffic() + v2.getUpTraffic();
                long downTraffic = v1.getDownTraffic() + v2.getDownTraffic();
                LogInfo logInfo = new LogInfo();
                logInfo.setTimeStame(timeStamp);
                logInfo.setUpTraffic(upTraffic);
                logInfo.setDownTraffic(downTraffic);
                return logInfo;
            }
        });
        return reduceByKeyRdd;
    }
    /**
     * reduceByKeyRdd map() -> <LogSort(timeStamp,upTraffic,downTraffic),diviceId>
     * @param aggregateByKeyRdd
     * @return
     */
    public static JavaPairRDD<LogSort,String> mapToPairSortValues(JavaPairRDD<String,LogInfo> aggregateByKeyRdd){
        JavaPairRDD<LogSort,String> mapToPairSortRdd = aggregateByKeyRdd.mapToPair(new PairFunction<Tuple2<String, LogInfo>, LogSort, String>() {
            public Tuple2<LogSort, String> call(Tuple2<String, LogInfo> stringLogInfoTuple2) throws Exception {
                String diviceId = stringLogInfoTuple2._1;
                long timeStamp = stringLogInfoTuple2._2.getTimeStamp();
                long upTraffic = stringLogInfoTuple2._2.getUpTraffic();
                long downTraffic = stringLogInfoTuple2._2.getDownTraffic();
                LogSort logSort = new LogSort(timeStamp,upTraffic,downTraffic);
                return new Tuple2<LogSort, String>(logSort,diviceId);
            }
        });
        return mapToPairSortRdd;
    }
    public static void main(String[] args) {
        JavaSparkContext sc = CommSparkContext.getsc();
        JavaRDD<String> rdd = sc.textFile("/Users/caizhengjie/IdeaProjects/spark_study01/src/main/java/com/kfk/spark/datas/access.log");
        // rdd map() -> <diviceId,LogInfo(timeStamp,upTraffic,downTraffic)>
        JavaPairRDD<String,LogInfo> mapToPairRdd = mapToPairValues(rdd);
        // mapToPairRdd reduceByKey() -> <diviceId,LogInfo(timeStamp,upTraffic,downTraffic)>
        JavaPairRDD<String,LogInfo> reduceByKeyRdd = reduceByKeyValues(mapToPairRdd);
        // reduceByKeyRdd map() -> <LogSort(timeStamp,upTraffic,downTraffic),diviceId>
        JavaPairRDD<LogSort, String> mapToPairSortRdd = mapToPairSortValues(reduceByKeyRdd);
        // sortByKey
        JavaPairRDD<LogSort,String> sortByKeyValues = mapToPairSortRdd.sortByKey(false);
        // TopN
        List<Tuple2<LogSort,String>> sortKeyList = sortByKeyValues.take(10);
        for (Tuple2<LogSort,String> logSortStringTuple2 : sortKeyList){
            System.out.println(logSortStringTuple2._2 + " : " + logSortStringTuple2._1.getUpTraffic() + " : " + logSortStringTuple2._1.getDownTraffic());
        }
    }
}

运行结果:

efde893d9c254e549f740d9613b3421c : 1036288 : 629025
84da30d2697042ca9a6835f6ccec6024 : 930018 : 737453
94055312e11c464d8bb16f21e4d607c6 : 827278 : 897382
c2a24d73d77d4984a1d88ea3330aa4c5 : 826817 : 943297
6e535645436f4926be1ee6e823dfd9d2 : 806761 : 613670
92f78b79738948bea0d27178bbcc5f3a : 761462 : 567899
1cca6591b6aa4033a190154db54a8087 : 750069 : 696854
f92ecf8e076d44b89f2d070fb1df7197 : 740234 : 779789
e6164ce7a908476a94502303328b26e8 : 722636 : 513737
537ec845bb4b405d9bf13975e4408b41 : 709045 : 642202
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
1月前
|
存储 Java
【编程基础知识】 分析学生成绩:用Java二维数组存储与输出
本文介绍如何使用Java二维数组存储和处理多个学生的各科成绩,包括成绩的输入、存储及格式化输出,适合初学者实践Java基础知识。
71 1
|
19天前
|
SQL Java 数据库连接
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率。本文介绍了连接池的工作原理、优势及实现方法,并提供了HikariCP的示例代码。
32 3
|
19天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
36 2
|
20天前
|
Java 关系型数据库 数据库
面向对象设计原则在Java中的实现与案例分析
【10月更文挑战第25天】本文通过Java语言的具体实现和案例分析,详细介绍了面向对象设计的五大核心原则:单一职责原则、开闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则帮助开发者构建更加灵活、可维护和可扩展的系统,不仅适用于Java,也适用于其他面向对象编程语言。
13 2
|
21天前
|
SQL Java 数据库连接
打破瓶颈:利用Java连接池技术提升数据库访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,避免了频繁的连接建立和断开,显著提升了数据库访问效率。常见的连接池库包括HikariCP、C3P0和DBCP,它们提供了丰富的配置选项和强大的功能,帮助优化应用性能。
40 2
|
24天前
|
SQL 分布式计算 Serverless
EMR Serverless Spark:一站式全托管湖仓分析利器
本文根据2024云栖大会阿里云 EMR 团队负责人李钰(绝顶) 演讲实录整理而成
117 2
|
1月前
|
Java
Java访问外网图片地址时,如何添加代理?
【10月更文挑战第14天】Java访问外网图片地址时,如何添加代理?
22 2
|
1月前
|
Java
让星星⭐月亮告诉你,Java synchronized(*.class) synchronized 方法 synchronized(this)分析
本文通过Java代码示例,介绍了`synchronized`关键字在类和实例方法上的使用。总结了三种情况:1) 类级别的锁,多个实例对象在同一时刻只能有一个获取锁;2) 实例方法级别的锁,多个实例对象可以同时执行;3) 同一实例对象的多个线程,同一时刻只能有一个线程执行同步方法。
18 1
|
24天前
|
存储 Java 编译器
[Java]基本数据类型与引用类型赋值的底层分析
本文详细分析了Java中不同类型引用的存储方式,包括int、Integer、int[]、Integer[]等,并探讨了byte与其他类型间的转换及String的相关特性。文章通过多个示例解释了引用和对象的存储位置,以及字符串常量池的使用。此外,还对比了String和StringBuilder的性能差异,帮助读者深入理解Java内存管理机制。
18 0
|
1月前
|
设计模式 数据采集 分布式计算
企业spark案例 —出租车轨迹分析
企业spark案例 —出租车轨迹分析
63 0