FastAPI(62)- FastAPI 部署在 Docker

简介: FastAPI(62)- FastAPI 部署在 Docker

Docker 学习


https://www.cnblogs.com/poloyy/p/15257059.html

 

项目结构


.

├── app

│   ├── __init__.py

│   └── main.py

├── Dockerfile

└── requirements.txt

 

FastAPI 应用程序 main.py 代码


from typing import Optional
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
def read_root():
    return {"Hello": "World"}
@app.get("/items/{item_id}")
def read_item(item_id: int, q: Optional[str] = None):
    return {"item_id": item_id, "q": q}


Dockerfile


# 1、从官方 Python 基础镜像开始
FROM python:3.9
# 2、将当前工作目录设置为 /code
# 这是放置 requirements.txt 文件和应用程序目录的地方
WORKDIR /code
# 3、先复制 requirements.txt 文件
# 由于这个文件不经常更改,Docker 会检测它并在这一步使用缓存,也为下一步启用缓存
COPY ./requirements.txt /code/requirements.txt
# 4、运行 pip 命令安装依赖项
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
# 5、复制 FastAPI 项目代码
COPY ./app /code/app
# 6、运行服务
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]


第四步:运行 pip 命令解析

RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt

  • --no-cache-dir 选项告诉 pip 不要将下载的包保存在本地,因为只有当 pip 将再次运行以安装相同的包时才会这样,但在使用容器时情况并非如此
  • --no-cache-dir 只与pip有关,与 Docker 或容器无关
  • --upgrade 选项告诉 pip 升级已经安装的软件包
  • 因为上一步复制文件可能会被 Docker 缓存检测到,所以这一步也会在 Docker 缓存可用时使用
  • 在这一步中使用缓存会在开发过程中一次又一次地构建镜像时节省大量时间,而不是每次都下载并安装所有依赖项

 

Docker 缓存

这里有一个重要的技巧 Dockerfile,首先只复制依赖项的文件,而不是 FastAPI 应用程序代码

COPY ./requirements.txt /code/requirements.txt

  • Docker 和其他工具以增量方式构建这些容器映像,在另一层之上添加一层
  • 从 Dockerfile 的顶部(首行)开始,由 Dockerfile 的每个指令来创建任何文件
  • Docker 和其他工具在构建镜像时也是用内部缓存
  • 如果文件自上次构建容器镜像后没有更改,则它将重用上次创建的同一层,而不是再次复制文件并从头开始创建一个新的层
  • 仅仅避免文件副本并不一定会改善太多,但是因为它在该步骤中使用了缓存,所以它可以在下一步中使用缓存
  • 例如,它可以将缓存用于安装依赖项的指令

RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt

  • requirements.txt 不会经常改变,所以通过复制该文件,Docker 可以在该步骤中使用缓存
  • Docker 将能够使用缓存进行下一步下载和安装这些依赖项,这就是节省大量时间的地方
  • 下载并安装该软件包的依赖关系可能需要几分钟,但使用的缓存将只需要几秒
  • 由于在开发过程中一次又一次地构建容器镜像以检查代码更改是否有效,因此可以节省大量累积时间

COPY ./app /code/app

  • Dockerfile 尾部,复制 FastAPI 应用程序代码
  • 由于这是最常更改的内容,因此将其放在最后,在此步骤之后的任何内容都将无法使用缓存

 

构建 Docker Image


在 Dockerfile 打开命令行

docker build -t myimage .

 

查看镜像

docker images

image.png

启动 docker 容器


docker run -d --name mycontainer -p 80:80 myimage

 

查看容器

docker ps

image.png

访问 127.0.0.1/docs


image.png


带有 Gunicorn 的官方 Docker 镜像 - Uvicorn


  • 此镜像包含一个自动调整机制,可根据可用的 CPU 内核设置工作进程的数量
  • 它具有合理的默认值,但仍然可以使用环境变量配置文件更新所有配置
  • 此镜像上的进程数是根据可用的 CPU 内核自动计算的,它将尝试从 CPU 中榨取尽可能多的性能
  • 但这也意味着,由于进程数取决于容器运行的 CPU,消耗的内存量也将取决于此
  • 因此,如果应用程序消耗大量内存(例如使用机器学习模型),并且服务器有很 CPU 内核但内存很,容器最终可能会使用比可用内存更多的内存,这会大大降低性能(甚至崩溃)

 

官方栗子

FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9
COPY ./requirements.txt /app/requirements.txt
RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt
COPY ./app /app


应用场景

  • 如果正在使用 Kubernetes,并且已经设置了集群级别的复制,就不应该使用此镜像,最好从头开始构建镜像
  • 如果应用程序足够简单以至于根据 CPU 设置默认进程数效果很好,不想费心在集群级别手动配置复制,并且运行的容器不会超过一个应用程序
  • 或者如果使用 Docker Compose 进行部署,在单个服务器上运行等

 

使用 poetry 的 docker  image


# 第一阶段:将仅用于安装 Poetry 并从 Poetry 的 pyproject.toml 文件生成带有项目依赖项的 requirements.txt。
FROM tiangolo/uvicorn-gunicorn:python3.9 as requirements-stage
# 将 /tmp 设置为当前工作目录;这是我们将生成文件requirements.txt的地方
WORKDIR /tmp
# 安装 poetry
RUN pip install poetry
# 复制
COPY ./pyproject.toml ./poetry.lock* /tmp/
# 生成 requirements.txt
RUN poetry export -f requirements.txt --output requirements.txt --without-hashes
# 这是最后阶段,在这往后的任何内容都将保留在最终容器映像中
FROM python:3.9
# 将当前工作目录设置为 /code
WORKDIR /code
# 复制 requirements.txt;这个文件只存在于前一个 Docker 阶段,这就是使用 --from-requirements-stage 复制它的原因
COPY --from=requirements-stage /tmp/requirements.txt /code/requirements.txt
# 运行命令
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
# 复制
COPY ./app /code/app
# 运行服务
CMD ["uvicorn", "app.1_快速入门:app", "--host", "0.0.0.0", "--port", "80"]


  • 第一阶段 Docker 是 Dockerfile 的一部分,它作为一个临时容器的镜像是仅用于生成一些文件供后面阶段使用
  • 使用 Poetry 时,使用 Docker 多阶段构建是有意义的
  • 因为实际上并不需要在最终容器镜像中安装 Poetry 及其依赖项,只需要生成的 requirements.txt 文件来安装项目依赖项

 

poetry 详细教程

https://www.cnblogs.com/poloyy/p/15267494.html

 

相关文章
|
3月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1129 6
|
3月前
|
应用服务中间件 网络安全 nginx
手把手教你使用 Docker 部署 Nginx 教程
本文详解Nginx核心功能与Docker部署优势,涵盖镜像拉取、容器化部署(快速、挂载、Compose)、HTTPS配置及常见问题处理,助力高效搭建稳定Web服务。
1565 4
|
3月前
|
应用服务中间件 Linux nginx
在虚拟机Docker环境下部署Nginx的步骤。
以上就是在Docker环境下部署Nginx的步骤。需要注意,Docker和Nginix都有很多高级用法和细节需要掌握,以上只是一个基础入门级别的教程。如果你想要更深入地学习和使用它们,请参考官方文档或者其他专业书籍。
191 5
|
4月前
|
存储 Docker Python
docker 部署 sftp
本文介绍SFTP服务的部署与配置,包括users.conf用户配置规则、Docker容器运行命令及上传目录权限说明,重点解析atmoz/sftp镜像的chroot机制与子目录映射,确保用户登录后正确访问/upload目录,并提供Python脚本实现文件上传示例。
435 12
docker 部署 sftp
|
4月前
|
运维 Linux 数据库
基于 Docker 部署 n8n 指南,新手一看就会
本教程详解如何通过 Docker 快速部署开源自动化工具 n8n,适合新手快速上手。内容涵盖官方部署步骤、常见难点及第三方一键部署方案,助你高效搭建自动化工作流平台。
1779 6
|
3月前
|
存储 NoSQL Redis
手把手教你用 Docker 部署 Redis
Redis是高性能内存数据库,支持多种数据结构,适用于缓存、消息队列等场景。本文介绍如何通过Docker快速拉取轩辕镜像并部署Redis,涵盖快速启动、持久化存储及docker-compose配置,助力开发者高效搭建稳定服务。
1162 7
|
3月前
|
存储 搜索推荐 数据库
🚀 RAGFlow Docker 部署全流程教程
RAGFlow是开源的下一代RAG系统,融合向量数据库与大模型,支持全文检索、插件化引擎切换,适用于企业知识库、智能客服等场景。支持Docker一键部署,提供轻量与完整版本,助力高效搭建私有化AI问答平台。
2758 8
|
3月前
|
存储 关系型数据库 MySQL
MySQL Docker 容器化部署全指南
MySQL是一款开源关系型数据库,广泛用于Web及企业应用。Docker容器化部署可解决环境不一致、依赖冲突问题,实现高效、隔离、轻量的MySQL服务运行,支持数据持久化与快速迁移,适用于开发、测试及生产环境。
698 4
|
3月前
|
存储 监控 安全
132_API部署:FastAPI与现代安全架构深度解析与LLM服务化最佳实践
在大语言模型(LLM)部署的最后一公里,API接口的设计与安全性直接决定了模型服务的可用性、稳定性与用户信任度。随着2025年LLM应用的爆炸式增长,如何构建高性能、高安全性的REST API成为开发者面临的核心挑战。FastAPI作为Python生态中最受青睐的Web框架之一,凭借其卓越的性能、强大的类型安全支持和完善的文档生成能力,已成为LLM服务化部署的首选方案。

热门文章

最新文章