三分钟快速搭建基于FastAPI的AI Agent应用!

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
视觉智能开放平台,视频资源包5000点
简介: 【10月更文挑战第1天】
fastapi==0.108.0
langchain_core==0.1.28
langchain_openai == 0.0.5
langchain_community==0.0.25
langchain==0.1.10
redis==7.2.0
qdrant_client == 1.7.1
uvicorn==0.23.2
pip install -r requirements.txt

想检查某依赖是否安装完毕:

pip show fastapi

那就先引入 fastapi。

# 这是一个使用 FastAPI 框架编写的简单应用程序的示例。
# 导入FastAPI模块
from fastapi import FastAPI

# 创建一个FastAPI应用实例
app = FastAPI()


# 定义一个路由,当访问'/'时会被触发
@app.get("/")
# 定义一个函数,返回一个字典,key为"Hello",value为"World"
def read_root():
    return {
   "Hello": "World"}


# 如果主程序为 __main__,则启动服务器
if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8090)

如何运行呢?

直接点击它:

直达API文档

新增一个 chat 接口:

# 这是一个使用 FastAPI 框架编写的简单应用程序的示例。
# 导入FastAPI模块
from fastapi import FastAPI, BackgroundTasks

# 创建一个FastAPI应用实例
app = FastAPI()


# 定义一个路由,当访问'/'时会被触发
@app.get("/")
# 定义一个函数,返回一个字典,key为"Hello",value为"World"
def read_root():
    return {
   "Hello": "World"}


@app.post("/chat")
def chat():
    return {
   "response": "I am a chat bot!"}


# 如果主程序为 __main__,则启动服务器
if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8090)

API文档立即更新:

同理,我们编写ws函数:

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    try:
        while True:
            data = await websocket.receive_text()
            await websocket.send_text(f"Message text was: {data}")
    except WebSocketDisconnect:
        print("Connection closed")
        await websocket.close()

使用 postman 构造 websocket 请求:

先点击 connect,再输入要发送的消息:你好。点击 send 即请求,响应了你好!

完整代码

# 这是一个使用 FastAPI 框架编写的简单应用程序的示例。
# 导入FastAPI模块
import os

from dotenv import load_dotenv, find_dotenv
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, BackgroundTasks
from langchain_openai import ChatOpenAI
from langchain.agents import create_openai_tools_agent, AgentExecutor, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import StrOutputParser
from langchain.memory import ConversationTokenBufferMemory
from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
import asyncio
import uuid
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
from Mytools import *

# 设置 API 密钥
DASHSCOPE_API_KEY = "xxx"
load_dotenv(find_dotenv())
os.environ["DASHSCOPE_API_KEY"] = DASHSCOPE_API_KEY
os.environ["SERPAPI_API_KEY"] = "xxx"

# 创建一个FastAPI应用实例
app = FastAPI()


# 定义一个工具函数
@tool
def test():
    """ Test tool"""""
    return "test"


# 定义一个Master类
class Master:
    def __init__(self):
        # 初始化ChatOpenAI模型
        self.chatmodel = ChatOpenAI(
            api_key=os.getenv("DASHSCOPE_API_KEY"),
            base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
            model="qwen-plus",
            temperature=0,
            streaming=True,
        )
        # 设置记忆存储键名
        self.MEMORY_KEY = "chat_history"
        # 初始化系统提示模板
        self.SYSTEMPL = ""
        self.prompt = ChatPromptTemplate.from_messages(
            [
                (
                    "system",
                    "你是一个助手"
                ),
                (
                    "user",
                    "{input}"
                ),
                MessagesPlaceholder(variable_name="agent_scratchpad"),
            ],
        )
        # 初始化记忆存储
        self.memory = ""
        # 初始化工具列表
        tools = [test]
        # 创建OpenAI工具代理
        agent = create_openai_tools_agent(
            self.chatmodel,
            tools=tools,
            prompt=self.prompt,
        )
        # 创建代理执行器
        self.agent_executor = AgentExecutor(
            agent=agent,
            tools=tools,
            verbose=True,
        )

    # 定义运行方法
    def run(self, query):
        # 调用代理执行器并获取结果
        result = self.agent_executor.invoke({
   "input": query})
        # 返回执行器的响应
        return result


# 定义根路由
@app.get("/")
# 定义根路由处理函数,返回一个包含"Hello"和"World"的字典
def read_root():
    return {
   "Hello": "World"}


# 定义聊天路由
@app.post("/chat")
# 定义聊天路由处理函数,接收一个字符串查询并调用Master类的run方法进行处理
def chat(query: str):
    master = Master()  # 初始化Master对象
    return master.run(query)


# 定义添加PDF路由
@app.post("/add_pdfs")
# 定义添加PDF路由处理函数,返回一个包含"response"键和"PDFs added!"值的字典
def add_pdfs():
    return {
   "response": "PDFs added!"}


# 定义添加文本路由
@app.post("add_texts")
# 定义添加文本路由处理函数,返回一个包含"response"键和"Texts added!"值的字典
def add_texts():
    return {
   "response": "Texts added!"}


# 定义WebSocket路由
@app.websocket("/ws")
# 定义WebSocket路由处理函数,接收一个WebSocket连接并启动一个无限循环
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    try:
        while True:
            data = await websocket.receive_text()
            await websocket.send_text(f"Message text was: {data}")
    except WebSocketDisconnect:
        print("Connection closed")
        await websocket.close()


# 如果主程序为 __main__,则启动服务器
if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8090)

fastapi 请求:

postman 请求:

PyCharm 命令行记录:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
10天前
|
人工智能
【活动报名】​AI应用启航workshop:瓴羊+通义助力企业迈入AI驱动的数智营销时代
【活动报名】​AI应用启航workshop:瓴羊+通义助力企业迈入AI驱动的数智营销时代
|
8天前
|
人工智能 弹性计算 Ubuntu
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
598 18
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
|
1天前
|
人工智能 前端开发 JavaScript
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
42 2
|
12天前
|
人工智能 边缘计算 运维
容器化浪潮下的AI赋能:智能化运维与创新应用
近年来,容器技术以其轻量、高效、可移植的特性成为云原生时代的基石,推动应用开发和部署方式革新。随着容器化应用规模扩大,传统运维手段逐渐力不从心。AI技术的引入为容器化生态带来新活力,实现智能监控、自动化故障诊断与修复及智能资源调度,提升运维效率和可靠性。同时,AI驱动容器化创新应用,如模型训练、边缘计算和Serverless AI服务,带来更多可能性。未来,AI与容器技术的融合将更加紧密,推动更智能、高效的运维平台和丰富的创新应用场景,助力数字化转型。
|
5天前
|
人工智能 搜索推荐 数据可视化
Manus:或将成为AI Agent领域的标杆
随着人工智能技术的飞速发展,AI Agent(智能体)作为人工智能领域的重要分支,正逐渐从概念走向现实,并在各行各业展现出巨大的应用潜力。在众多AI Agent产品中,Manus以其独特的技术优势和市场表现,有望成为该领域的标杆。作为资深AI工程师,本文将深入探讨Manus的背景知识、主要业务场景、底层原理、功能的优缺点,并尝试使用Java搭建一个属于自己的Manus助手,以期为AI Agent技术的发展和应用提供参考。
10749 10
|
8天前
|
人工智能 Java API
Spring AI与DeepSeek实战一:快速打造智能对话应用
在 AI 技术蓬勃发展的今天,国产大模型DeepSeek凭借其低成本高性能的特点,成为企业智能化转型的热门选择。而Spring AI作为 Java 生态的 AI 集成框架,通过统一API、简化配置等特性,让开发者无需深入底层即可快速调用各类 AI 服务。本文将手把手教你通过spring-ai集成DeepSeek接口实现普通对话与流式对话功能,助力你的Java应用轻松接入 AI 能力!虽然通过Spring AI能够快速完成DeepSeek大模型与。
234 11
|
9天前
|
人工智能 运维 架构师
Serverless + AI 让应用开发更简单,加速应用智能化
Serverless + AI 让应用开发更简单,加速应用智能化
|
7天前
|
人工智能 人机交互
清华、面壁提出创新AI Agent交互:能主动思考、预测需求
清华大学与面壁智能团队提出了一种创新的AI Agent交互模式,将基于大型语言模型的智能体从被动响应转变为主动协助。通过数据驱动的方法,研究团队开发了能够预测和主动发起任务的智能体,并创建了ProactiveBench数据集。实验结果显示,经过微调的模型在主动性方面取得了66.47%的F1分数,展示了该方法在人机协作中的潜力。论文链接:https://arxiv.org/abs/2410.12361
32 2
|
9天前
|
人工智能 Java API
Java 也能快速搭建 AI 应用?一文带你玩转 Spring AI 可观测性
Java 也能快速搭建 AI 应用?一文带你玩转 Spring AI 可观测性
|
9天前
|
消息中间件 人工智能 自然语言处理
基于 RocketMQ 事件驱动架构的 AI 应用实践
基于 RocketMQ 事件驱动架构的 AI 应用实践