MapReduce之join案例详解!

简介: 笔记

一、需求分析


MapReduce提供了表连接操作其中包括Map端join、Reduce端join还有半连接,现在我们要讨论的是Map端join,Map端join是指数据到达map处理函数之前进行合并的,效率要远远高于Reduce端join,因为Reduce端join是把所有的数据都经过Shuffle,非常消耗资源。


案例分析:

一个电商网站后台数据存在两个表(可以看为两个文件):

用户表信息:用户ID、用户名、电话

订单表信息:订单ID、用户ID、商品价格、商品名

如果想把两张表关联成:用户ID、用户名、电话、订单ID,价格,商品名,并且按照需求对其输出。


在关系型数据库中,我们可以通过简单的sql语句实现

  **customer
    cid   cname  telphone
  **order
    oid   cid   price  pname
    cid  cname  teplone  pname price
  == (select * from customer a,order b where a.cid = b.cid)

那么在mapreduce我们如何实现?根据不同场景,可以选用不同的方案,下面我们详细了解不同的方法。

我们先准备好数据集:

customer -> 数据集
    1,jone,13423459976
    2,ben,15099871134
    3,henry,13599187709
    4,tony,13399008876
order  ->  数据集
    100,1,45.50,product-1
    200,1,23,product-2
    300,1,50,product-3
    400,1,99,product-4
    102,2,19.9,product-5
    103,2,33,product-6
    104,3,44,product-7
    105,4,1009,product-8
    106,5,22,product-9

MR中,多数据集关联,关键是找到KEY,两个方案来实现join:


二、Map join实现


Map join实现的思路:Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多 份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。


应用场景:两个待连接表中,有一个表非常大,而另一个表非常小,比如就电商中的用户订单表和用户表,一个用户可以有多个订单,这样一对多的关系,就会导致用户表数据量较小,订单表数据量较大,我们可以把用户表放入缓存中List,Map,将订单表放入map端,map()输入数据与内存中的数据进行匹配,如果匹配上,就输出他们的关联合并数据。


较少数据集放入内存中List,Map

Map<key,value> == Map<cid,customerInfo>
  • map()输入数据与内存中的数据进行匹配,如果匹配上,就输出他们的关联合并数据
read order files  ->  <cid,orderInfo>    -> find in Map

实现代码:

package com.kfk.hadoop.mr.join;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.HashMap;
import java.util.Map;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/10/9
 * @time : 7:07 下午
 */
public class DistributedCache extends Configured implements Tool {
    static Map<String,String> customerMap = new HashMap<String, String>();
    /**
     * map
     * TODO
     */
    public static class TemplateMapper extends Mapper<LongWritable, Text,Text, Text>{
        private static final Text outputKey = new Text();
        private static final Text outputValue = new Text();
        /**
         * 将数据缓存到内存
         * @param context
         * @throws IOException
         * @throws InterruptedException
         */
        @Override
        public void setup(Context context) throws IOException, InterruptedException {
            // 创建configuration
            Configuration configuration = context.getConfiguration();
            // 获取要将数据缓存到内存中数据的路径
            URI[] uri = Job.getInstance(configuration).getCacheFiles();
            Path path = new Path(uri[0]);
            FileSystem fileSystem = FileSystem.get(configuration);
            // 创建输入流
            InputStream inputStream = fileSystem.open(path);
            InputStreamReader inputStreamReader = new InputStreamReader(inputStream);
            BufferedReader bufferedReader = new BufferedReader(inputStreamReader);
            // 读取每一行数据
            String line = null;
            while ((line = bufferedReader.readLine()) != null){
                // 如果每一行的长度大于0,将数据放入map中
                if (line.trim().length() > 0){
                    // 数据按照","分开,第一个作为map的key,整行作为value
                    customerMap.put(line.split(",")[0],line);
                }
            }
            // 关闭流
            bufferedReader.close();
            inputStream.close();
            inputStreamReader.close();
        }
        @Override
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 将map端输入每一行的value转化为字符串
            String linevalue = value.toString();
            // 将每一行数据按","分开
            String[] lines = linevalue.split(",");
            /*
            解析数据:将每一行的数据放入到一个数组中,取出数组中的第二个元素,customerMap.get()方法返回的value
            如果value不为空,map端的outputKey就为数组中的第二个元素,map端的outputValue就为customerMap的value + map输入端的value
            eg:1       (1,jone,13423459976)+(400,1,99,product-4)
             */
            if (customerMap.get(lines[1]) != null){
                // outputKey的数据模型是cid
                outputKey.set(lines[1]);
                // outputValue的数据模型是orderInfo+customerInfo
                outputValue.set(customerMap.get(lines[1])+linevalue);
                System.out.println(outputKey+"---"+outputValue);
                context.write(outputKey,outputValue);
            }
        }
        @Override
        public void cleanup(Context context) throws IOException, InterruptedException {
            // TODO
        }
    }
    /**
     * reduce
     * TODO
     */
    public static class TemplateReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
        @Override
        public void setup(Context context) throws IOException, InterruptedException {
            // TODO
        }
        @Override
        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            // TODO
        }
        @Override
        public void cleanup(Context context) throws IOException, InterruptedException {
            // TODO
        }
    }
    /**
     * run
     * @param args
     * @return
     * @throws IOException
     * @throws ClassNotFoundException
     * @throws InterruptedException
     */
    public int run(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
        // 1) get conf
        Configuration configuration = this.getConf();
        // 2) create job
        Job job = Job.getInstance(configuration,this.getClass().getSimpleName());
        job.setJarByClass(this.getClass());
        // 3.1) input,指定job的输入
        Path path = new Path(args[0]);
        FileInputFormat.addInputPath(job,path);
        // 3.2) map,指定job的mapper和输出的类型
        job.setMapperClass(TemplateMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        // 1.分区
        // job.setPartitionerClass();
        // 2.排序
        // job.setSortComparatorClass();
        // 3.combiner -可选项
        // job.setCombinerClass(WordCountCombiner.class);
        // 4.compress -可配置
        // configuration.set("mapreduce.map.output.compress","true");
        // 使用的SnappyCodec压缩算法
        // configuration.set("mapreduce.map.output.compress.codec","org.apache.hadoop.io.compress.SnappyCodec");
        // 5.分组
        // job.setGroupingComparatorClass();
        // 6.设置reduce的数量
        // job.setNumReduceTasks(2);
        // 3.3) reduce,指定job的reducer和输出类型
        // job.setReducerClass(TemplateReducer.class);
        // job.setOutputKeyClass(Text.class);
        // job.setOutputValueClass(IntWritable.class);
        // 获取要将数据缓存到内存中数据的路径
        URI uri = new URI(args[2]);
        // 设置要缓存到内存中的数据
        job.addCacheFile(uri);
        // 3.4) output,指定job的输出
        Path outpath = new Path(args[1]);
        FileOutputFormat.setOutputPath(job,outpath);
        // 4) commit,执行job
        boolean isSuccess = job.waitForCompletion(true);
        // 如果正常执行返回0,否则返回1
        return (isSuccess) ? 0 : 1;
    }
    public static void main(String[] args) {
        // 添加输入,输入参数
        args = new String[]{
            "hdfs://bigdata-pro-m01:9000/user/caizhengjie/datas/order.txt",
            "hdfs://bigdata-pro-m01:9000/user/caizhengjie/mr/output",
            "hdfs://bigdata-pro-m01:9000/user/caizhengjie/datas/customer.txt"
        };
//        WordCountUpMR wordCountUpMR = new WordCountUpMR();
        Configuration configuration = new Configuration();
        try {
            // 判断输出的文件存不存在,如果存在就将它删除
            Path fileOutPath = new Path(args[1]);
            FileSystem fileSystem = FileSystem.get(configuration);
            if (fileSystem.exists(fileOutPath)){
                fileSystem.delete(fileOutPath,true);
            }
            // 调用run方法
            int status = ToolRunner.run(configuration,new DistributedCache(),args);
            // 退出程序
            System.exit(status);
        } catch (IOException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

运行结果:

1       1,jone,13423459976400,1,99,product-4
1       1,jone,13423459976300,1,50,product-3
1       1,jone,13423459976200,1,23,product-2
1       1,jone,13423459976100,1,45.50,product-1
2       2,ben,15099871134103,2,33,product-6
2       2,ben,15099871134102,2,19.9,product-5
3       3,henry,13599187709104,3,44,product-7
4       4,tony,13399008876105,4,1009,product-8


三、Reduce join实现

Reduce join实现思路:相同key的value值合并在一起,所有的数据集都作为map的输入。 在map阶段,map函数同时读取两个文件customer.txt和order.txt,为了区分两种来源的key/value数据对,对每条数据打一个标签tag,比如:tag:customer表示来自文件customer.txt,tag:order表示来自文件order.txt。即:map阶段的主要任务是对不同文件中的数据打标签。在reduce阶段,reduce函数获取key相同的来自customer.txt和order.txt文件的value list, 然后对于同一个key,对customer.txt和order.txt中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。


map端:

 **customer
   <cid,customerInfo>   ->  <cid,customerInfo(tag:customer   data:cinfo)>
 **order
   <cid,orderInfo>      -> <cid,orderInfo(tag:order   data:oInfo)>

reduce端:

<cid,List(customerInfo + orderInfo)>

计算过程:

25.png自定义数据类型代码:

package com.kfk.hadoop.mr.join;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/10/17
 * @time : 4:50 下午
 */
public class DataJoinWritable implements Writable {
    private String tag;
    private String data;
    public DataJoinWritable() {
    }
    public DataJoinWritable(String tag, String data) {
        this.set(tag,data);
    }
    public void set(String tag, String data) {
        this.tag = tag;
        this.data = data;
    }
    public void write(DataOutput out) throws IOException {
        out.writeUTF(this.getTag());
        out.writeUTF(this.getData());
    }
    public void readFields(DataInput in) throws IOException {
        this.tag = in.readUTF();
        this.data = in.readUTF();
    }
    public String getTag() {
        return tag;
    }
    public void setTag(String tag) {
        this.tag = tag;
    }
    public String getData() {
        return data;
    }
    public void setData(String data) {
        this.data = data;
    }
    @Override
    public String toString() {
        return "DataJoinWritable{" +
                "tag='" + tag + '\'' +
                ", data='" + data + '\'' +
                '}';
    }
}
package com.kfk.hadoop.mr.join;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/10/17
 * @time : 5:04 下午
 */
public class DataCommon {
    public final static String CUSTOMER = "customer";
    public final static String ORDER = "order";
}

实现代码:

package com.kfk.hadoop.mr.join;
import com.google.common.collect.Lists;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
 * @author : 蔡政洁
 * @email :caizhengjie888@icloud.com
 * @date : 2020/10/9
 * @time : 7:07 下午
 */
public class DataJoinMR extends Configured implements Tool {
    /**
     * map
     * TODO
     */
    public static class TemplateMapper extends Mapper<LongWritable, Text,Text, DataJoinWritable>{
        // 创建map端输出的key,value对象
        private static final Text outputKey = new Text();
        private static final DataJoinWritable outputValue = new DataJoinWritable();
        @Override
        public void setup(Context context) throws IOException, InterruptedException {
            // TODO
        }
        @Override
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 将map端输入的value转换成数组
            String[] values = value.toString().split(",");
            // 数据预处理
            if ((values.length != 3) && (values.length != 4)){
                return;
            }
            // customer数据处理
            if (values.length == 3){
                String cid = values[0];
                String name = values[1];
                String telephone = values[2];
                // 将cid作为key
                outputKey.set(cid);
                // DataCommon.CUSTOMER表示为tag,并设置为value
                outputValue.set(DataCommon.CUSTOMER,name+","+telephone);
            }
            // order数据处理
            if (values.length == 4){
                String cid = values[1];
                String price = values[2];
                String productName = values[3];
                // 将cid作为key
                outputKey.set(cid);
                // DataCommon.ORDER表示为tag,并设置为value
                outputValue.set(DataCommon.ORDER,price+","+productName);
            }
            context.write(outputKey,outputValue);
            // 打印出outputKey,outputValue的数据格式
            System.out.println(outputKey+","+outputValue);
        }
        @Override
        public void cleanup(Context context) throws IOException, InterruptedException {
            // TODO
        }
    }
    /**
     * reduce
     * TODO
     */
    public static class TemplateReducer extends Reducer<Text,DataJoinWritable, NullWritable,Text>{
        // 创建reduce输出value对象,输出的数据类型为Text
        private static final Text outputValue = new Text();
        @Override
        public void setup(Context context) throws IOException, InterruptedException {
            // TODO
        }
        @Override
        public void reduce(Text key, Iterable<DataJoinWritable> values, Context context) throws IOException, InterruptedException {
            // 打印出reduce输入的kv集合,用于本机测试
//            List<DataJoinWritable> list = Lists.newArrayList(values);
//            System.out.println("Reduce in == KeyIn: "+key+"   ValueIn: "+list);
            // reduce端输入的数据格式:<cid,List(customerInfo,orderInfo,orderInfo,orderInfo)>
            String customerInfo = null;
            // 定义一个orderList的列表,里面存放orderInfo
            List<String> orderList = new ArrayList<String>();
            // 从reduce输入的列表中取数据
            for (DataJoinWritable dataJoinWritable:values){
                // 取出customerInfo的数据
                if (DataCommon.CUSTOMER.equals(dataJoinWritable.getTag())){
                    customerInfo = dataJoinWritable.getData();
                }
                // 取出orderInfo的数据
                else if (DataCommon.ORDER.equals(dataJoinWritable.getTag())){
                    orderList.add(dataJoinWritable.getData());
                }
            }
            // 输出数据
            for (String orderInfo : orderList){
                // 如果reduce输入的列表中没有customerInfo的数据就筛选掉
                if (customerInfo == null) {
                    continue;
                }
                // 设置reduce输出的value
                outputValue.set(key.toString()+","+customerInfo+","+orderInfo);
                // 输出key类型设置为null
                context.write(NullWritable.get(),outputValue);
            }
        }
        @Override
        public void cleanup(Context context) throws IOException, InterruptedException {
            // TODO
        }
    }
    /**
     * run
     * @param args
     * @return
     * @throws IOException
     * @throws ClassNotFoundException
     * @throws InterruptedException
     */
    public int run(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        // 1) get conf
        Configuration configuration = this.getConf();
        // 2) create job
        Job job = Job.getInstance(configuration,this.getClass().getSimpleName());
        job.setJarByClass(this.getClass());
        // 3.1) input,指定job的输入
        Path path = new Path(args[0]);
        FileInputFormat.addInputPath(job,path);
        // 3.2) map,指定job的mapper和输出的类型
        job.setMapperClass(TemplateMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DataJoinWritable.class);
        // 1.分区
        // job.setPartitionerClass();
        // 2.排序
        // job.setSortComparatorClass();
        // 3.combiner -可选项
        // job.setCombinerClass(WordCountCombiner.class);
        // 4.compress -可配置
        // configuration.set("mapreduce.map.output.compress","true");
        // 使用的SnappyCodec压缩算法
        // configuration.set("mapreduce.map.output.compress.codec","org.apache.hadoop.io.compress.SnappyCodec");
        // 5.分组
        // job.setGroupingComparatorClass();
        // 6.设置reduce的数量
        // job.setNumReduceTasks(2);
        // 3.3) reduce,指定job的reducer和输出类型
        job.setReducerClass(TemplateReducer.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Text.class);
        // 3.4) output,指定job的输出
        Path outpath = new Path(args[1]);
        FileOutputFormat.setOutputPath(job,outpath);
        // 4) commit,执行job
        boolean isSuccess = job.waitForCompletion(true);
        // 如果正常执行返回0,否则返回1
        return (isSuccess) ? 0 : 1;
    }
    public static void main(String[] args) {
        // 添加输入,输入参数
        args = new String[]{
            "hdfs://bigdata-pro-m01:9000/user/caizhengjie/datas/join/",
            "hdfs://bigdata-pro-m01:9000/user/caizhengjie/mr/output"
        };
//        WordCountUpMR wordCountUpMR = new WordCountUpMR();
        Configuration configuration = new Configuration();
        try {
            // 判断输出的文件存不存在,如果存在就将它删除
            Path fileOutPath = new Path(args[1]);
            FileSystem fileSystem = FileSystem.get(configuration);
            if (fileSystem.exists(fileOutPath)){
                fileSystem.delete(fileOutPath,true);
            }
            // 调用run方法
            int status = ToolRunner.run(configuration,new DataJoinMR(),args);
            // 退出程序
            System.exit(status);
        } catch (IOException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

运行结果:

1,jone,13423459976,99,product-4
1,jone,13423459976,50,product-3
1,jone,13423459976,23,product-2
1,jone,13423459976,45.50,product-1
2,ben,15099871134,33,product-6
2,ben,15099871134,19.9,product-5
3,henry,13599187709,44,product-7
4,tony,13399008876,1009,product-8

总结:blog介绍了两种join方式。这两种join方式适用于不同的场景,其处理效率上的相差还是蛮大的,资源消耗也不相同,其中主要导致因素是网络传输。



相关文章
|
分布式计算 算法 数据库
32 MAPREDUCE的map端join算法实现
32 MAPREDUCE的map端join算法实现
43 0
|
1月前
|
SQL 分布式计算 Java
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
31 3
|
6月前
|
存储 分布式计算 监控
Hadoop【基础知识 01+02】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
299 2
|
6月前
|
分布式计算 数据可视化 Hadoop
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
|
6月前
|
分布式计算 监控 Hadoop
Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
268 0
|
数据采集 分布式计算 搜索推荐
Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(一)
Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(一)
|
分布式计算 Hadoop 大数据
MapReduce 案例之数据去重
MapReduce 案例之数据去重
288 0
|
6月前
|
缓存 分布式计算 Java
MapReduce编程:join操作和聚合操作
MapReduce编程:join操作和聚合操作
103 0
|
存储 SQL 分布式计算
31 MAPREDUCE的reduce端join算法实现
31 MAPREDUCE的reduce端join算法实现
37 0
|
数据采集 缓存 分布式计算
Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(二)
Hadoop学习---7、OutputFormat数据输出、MapReduce内核源码解析、Join应用、数据清洗、MapReduce开发总结(二)
下一篇
无影云桌面