面试官:知道时间轮算法吗?在Netty和Kafka中如何应用的?为什么不用Timer、延时线程池?(上)

简介: 面试官:知道时间轮算法吗?在Netty和Kafka中如何应用的?为什么不用Timer、延时线程池?(上)

大家好,我是yes。


最近看 Kafka 看到了时间轮算法,记得以前看 Netty 也看到过这玩意,没太过关注。今天就来看看时间轮到底是什么东西。


为什么要用时间轮算法来实现延迟操作?


延时操作 Java 不是提供了 Timer 么?


还有 DelayQueue 配合线程池或者 ScheduledThreadPool 不香吗?


我们先来简单看看 Timer、DelayQueue 和 ScheduledThreadPool 的相关实现,看看它们是如何实现延时任务的,源码之下无秘密。再来剖析下为何 Netty 和 Kafka 特意实现了时间轮来处理延迟任务。


如果在手机上阅读其实纯看字也行,不用看代码,我都会先用文字描述清楚。不过电脑上看效果更佳。


Timer


Timer 可以实现延时任务,也可以实现周期性任务。我们先来看看 Timer 核心属性和构造器。

image.png


核心就是一个优先队列和封装的执行任务的线程,从这我们也可以看到一个 Timer 只有一个线程执行任务。


再来看看如何实现延时和周期性任务的。我先简单的概括一下,首先维持一个小顶堆,即最快需要执行的任务排在优先队列的第一个,根据堆的特性我们知道插入和删除的时间复杂度都是 O(logn)。


然后 TimerThread 不断地拿排着的第一个任务的执行时间和当前时间做对比。如果时间到了先看看这个任务是不是周期性执行的任务,如果是则修改当前任务时间为下次执行的时间,如果不是周期性任务则将任务从优先队列中移除。最后执行任务。如果时间还未到则调用 wait() 等待。

再看下图,整理下流程。



image.png


流程知道了再对着看下代码,这块就差不多了。看代码不爽的可以跳过代码部分,影响不大。

先来看下 TaskQueue,就简单看下插入任务的过程,就是个普通的堆插入操作。

image.png

image.png


小结一下

可以看出 Timer 实际就是根据任务的执行时间维护了一个优先队列,并且起了一个线程不断地拉取任务执行。


有什么弊端呢?


首先优先队列的插入和删除的时间复杂度是O(logn),当数据量大的时候,频繁的入堆出堆性能有待考虑。


并且是单线程执行,那么如果一个任务执行的时间过久则会影响下一个任务的执行时间(当然你任务的run要是异步执行也行)。

并且从代码可以看到对异常没有做什么处理,那么一个任务出错的时候会导致之后的任务都无法执行。


ScheduledThreadPoolExecutor


在说 ScheduledThreadPoolExecutor 之前我们再看下 Timer 的注释,注释可都是干货千万不要错过。我做了点修改,突出了下重点。

Java 5.0 introduced ScheduledThreadPoolExecutor, It is effectively a more versatile replacement for the Timer, it allows multiple service threads. Configuring with one thread makes it equivalent to Timer。

简单翻译下:1.5 引入了 ScheduledThreadPoolExecutor,它是一个具有更多功能的 Timer 的替代品,允许多个服务线程。如果设置一个服务线程和 Timer 没啥差别。

从注释看出相对于 Timer ,可能就是单线程跑任务和多线程跑任务的区别。我们来看下。

image.png


继承了 ThreadPoolExecutor,实现了 ScheduledExecutorService。可以定性操作就是正常线程池差不多了。区别就在于两点,一个是 ScheduledFutureTask ,一个是 DelayedWorkQueue。

其实 DelayedWorkQueue 就是优先队列,也是利用数组实现的小顶堆。而 ScheduledFutureTask 继承自 FutureTask 重写了 run 方法,实现了周期性任务的需求。



image.png


小结一下

ScheduledThreadPoolExecutor 大致的流程和 Timer 差不多,也是维护一个优先队列,然后通过重写 task 的 run 方法来实现周期性任务,主要差别在于能多线程运行任务,不会单线程阻塞


并且 Java 线程池的设定是 task 出错会把错误吃了,无声无息的。因此一个任务出错也不会影响之后的任务


DelayQueue


Java 中还有个延迟队列 DelayQueue,加入延迟队列的元素都必须实现 Delayed 接口。延迟队列内部是利用 PriorityQueue 实现的,所以还是利用优先队列!Delayed 接口继承了Comparable 因此优先队列是通过 delay 来排序的。

image.png


小结一下

也是利用优先队列实现的,元素通过实现 Delayed  接口来返回延迟的时间。不过延迟队列就是个容器,需要其他线程来获取和执行任务。


这下是搞明白了 Timer 、ScheduledThreadPool 和 DelayQueue,总结的说下它们都是通过优先队列来获取最早需要执行的任务,因此插入和删除任务的时间复杂度都为O(logn),并且 Timer 、ScheduledThreadPool 的周期性任务是通过重置任务的下一次执行时间来完成的。


问题就出在时间复杂度上,插入删除时间复杂度是O(logn),那么假设频繁插入删除次数为 m,总的时间复杂度就是O(mlogn),这种时间复杂度满足不了 Kafka 这类中间件对性能的要求,而时间轮算法的插入删除时间复杂度是O(1)。我们来看看时间轮算法是如何实现的。


相关文章
|
2月前
|
消息中间件 存储 缓存
大厂面试高频:Kafka 工作原理 ( 详细图解 )
本文详细解析了 Kafka 的核心架构和实现原理,消息中间件是亿级互联网架构的基石,大厂面试高频,非常重要,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka 工作原理 ( 详细图解 )
|
2天前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
2月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
112 5
|
13天前
|
消息中间件 运维 Java
招行面试:RocketMQ、Kafka、RabbitMQ,如何选型?
45岁资深架构师尼恩针对一线互联网企业面试题,特别是招商银行的高阶Java后端面试题,进行了系统化梳理。本文重点讲解如何根据应用场景选择合适的消息中间件(如RabbitMQ、RocketMQ和Kafka),并对比三者的性能、功能、可靠性和运维复杂度,帮助求职者在面试中充分展示技术实力,实现“offer直提”。此外,尼恩还提供了《尼恩Java面试宝典PDF》等资源,助力求职者提升架构、设计、开发水平,应对高并发、分布式系统的挑战。更多内容及技术圣经系列PDF,请关注【技术自由圈】获取。
|
2月前
|
消息中间件 大数据 Kafka
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
本文深入探讨了消息队列的核心概念、应用场景及Kafka、RocketMQ、RabbitMQ的优劣势比较,大厂面试高频,必知必会,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
|
2月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
72 1
|
3月前
|
消息中间件 存储 缓存
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
40岁老架构师尼恩分享了Kafka如何实现高性能的秘诀,包括零拷贝技术和顺序写。Kafka采用mmap和sendfile两种零拷贝技术,前者用于读写索引文件,后者用于向消费者发送消息,减少数据在用户空间和内核空间间的拷贝次数,提高数据传输效率。此外,Kafka通过顺序写日志文件,避免了磁盘寻道和旋转延迟,进一步提升了写入性能。尼恩还提供了系列技术文章和PDF资料,帮助读者深入理解这些技术,提升面试竞争力。
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
|
4月前
|
消息中间件 前端开发 NoSQL
面试官:线程池遇到未处理的异常会崩溃吗?
面试官:线程池遇到未处理的异常会崩溃吗?
91 3
面试官:线程池遇到未处理的异常会崩溃吗?
|
4月前
|
消息中间件 存储 前端开发
面试官:说说停止线程池的执行流程?
面试官:说说停止线程池的执行流程?
65 2
面试官:说说停止线程池的执行流程?
|
4月前
|
消息中间件 前端开发 NoSQL
面试官:如何实现线程池任务编排?
面试官:如何实现线程池任务编排?
49 1
面试官:如何实现线程池任务编排?

热门文章

最新文章