【小家java】Java线程池之---ForkJoinPool线程池的使用以及原理(中)

简介: 【小家java】Java线程池之---ForkJoinPool线程池的使用以及原理(中)
  • 方案三:采用ForkJoinPool(Fork/Join)
    前面花了点时间讲解了 ForkJoinPool 之前的实现方法,主要为了在代码的编写难度上进行一下对比。现在就列出本篇文章的重点——ForkJoinPool 的实现方法。


/**
 * 采用ForkJoin来计算求和
 *  * @author fangshixiang@vipkid.com.cn
 * @description //
 * @date 2018/11/5 15:09
 */
public class ForkJoinCalculator implements Calculator {
    private ForkJoinPool pool;
    //执行任务RecursiveTask:有返回值  RecursiveAction:无返回值
    private static class SumTask extends RecursiveTask<Long> {
        private long[] numbers;
        private int from;
        private int to;
        public SumTask(long[] numbers, int from, int to) {
            this.numbers = numbers;
            this.from = from;
            this.to = to;
        }
        //此方法为ForkJoin的核心方法:对任务进行拆分  拆分的好坏决定了效率的高低
        @Override
        protected Long compute() {
            // 当需要计算的数字个数小于6时,直接采用for loop方式计算结果
            if (to - from < 6) {
                long total = 0;
                for (int i = from; i <= to; i++) {
                    total += numbers[i];
                }
                return total;
            } else { // 否则,把任务一分为二,递归拆分(注意此处有递归)到底拆分成多少分 需要根据具体情况而定
                int middle = (from + to) / 2;
                SumTask taskLeft = new SumTask(numbers, from, middle);
                SumTask taskRight = new SumTask(numbers, middle + 1, to);
                taskLeft.fork();
                taskRight.fork();
                return taskLeft.join() + taskRight.join();
            }
        }
    }
    public ForkJoinCalculator() {
        // 也可以使用公用的线程池 ForkJoinPool.commonPool():
        // pool = ForkJoinPool.commonPool()
        pool = new ForkJoinPool();
    }
    @Override
    public long sumUp(long[] numbers) {
        Long result = pool.invoke(new SumTask(numbers, 0, numbers.length - 1));
        pool.shutdown();
        return result;
    }
}
输出:
耗时:390ms
结果为:50000005000000


可以看出,使用了 ForkJoinPool 的实现逻辑全部集中在了 compute() 这个函数里,仅用了14行就实现了完整的计算过程。特别是,在这段代码里没有显式地“把任务分配给线程”,只是分解了任务,而把具体的任务到线程的映射交给了 ForkJoinPool 来完成。


  方案四:采用并行流(JDK8以后的推荐做法)


    public static void main(String[] args) {
        Instant start = Instant.now();
        long result = LongStream.rangeClosed(0, 10000000L).parallel().reduce(0, Long::sum);
        Instant end = Instant.now();
        System.out.println("耗时:" + Duration.between(start, end).toMillis() + "ms");
        System.out.println("结果为:" + result); // 打印结果500500
    }
输出:
耗时:130ms
结果为:50000005000000


并行流底层还是Fork/Join框架,只是任务拆分优化得很好。


耗时效率方面解释:Fork/Join 并行流等当计算的数字非常大的时候,优势才能体现出来。也就是说,如果你的计算比较小,或者不是CPU密集型的任务,不太建议使用并行处理


原理


**我一直以为,要理解一样东西的原理,最好就是自己尝试着去实现一遍。**根据上面的示例代码,可以看出 fork() 和 join() 是 Fork/Join Framework “魔法”的关键。我们可以根据函数名假设一下 fork() 和 join() 的作用:


  fork():开启一个新线程(或是重用线程池内的空闲线程),将任务交给该线程处理。


  join():等待该任务的处理线程处理完毕,获得返回值。


疑问:当任务分解得越来越细时,所需要的线程数就会越来越多,而且大部分线程处于等待状态?


但是如果我们在上面的示例代码加入以下代码


System.out.println(pool.getPoolSize());


这会显示当前线程池的大小,在我的机器上这个值是4,也就是说只有4个工作线程。甚至即使我们在初始化 pool 时指定所使用的线程数为1时,上述程序也没有任何问题——除了变成了一个串行程序以外。


public ForkJoinCalculator() {
    pool = new ForkJoinPool(1);
}


这个矛盾可以导出,我们的假设是错误的,并不是每个 fork() 都会促成一个新线程被创建,而每个 join() 也不是一定会造成线程被阻塞。Fork/Join Framework 的实现算法并不是那么“显然”,而是一个更加复杂的算法——这个算法的名字就叫做work stealing 算法。


image.png



1.ForkJoinPool 的每个工作线程都维护着一个工作队列(WorkQueue),这是一个双端队列(Deque),里面存放的对象是任务(ForkJoinTask)。


2.每个工作线程在运行中产生新的任务(通常是因为调用了 fork())时,会放入工作队列的队尾,并且工作线程在处理自己的工作队列时,使用的是 LIFO 方式,也就是说每次从队尾取出任务来执行。


3.每个工作线程在处理自己的工作队列同时,会尝试窃取一个任务(或是来自于刚刚提交到 pool 的任务,或是来自于其他工作线程的工作队列),窃取的任务位于其他线程的工作队列的队首,也就是说工作线程在窃取其他工作线程的任务时,使用的是 FIFO 方式。


4.在遇到 join() 时,如果需要 join 的任务尚未完成,则会先处理其他任务,并等待其完成。


5.在既没有自己的任务,也没有可以窃取的任务时,进入休眠。


至于Fork和Join源码级别的的细节,本文不做过多描述了~~


   submit() 和 fork() 其实没有本质区别,只是提交对象变成了 submitting queue 而已(还有一些同步,初始化的操作)。submitting queue 和其他 work queue 一样,是工作线程”窃取“的对象,因此当其中的任务被一个工作线程成功窃取时,就意味着提交的任务真正开始进入执行阶段。

相关文章
|
3天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
70 38
|
2天前
|
安全 Java
在 Java 中使用实现 Runnable 接口的方式创建线程
【10月更文挑战第22天】通过以上内容的介绍,相信你已经对在 Java 中如何使用实现 Runnable 接口的方式创建线程有了更深入的了解。在实际应用中,需要根据具体的需求和场景,合理选择线程创建方式,并注意线程安全、同步、通信等相关问题,以确保程序的正确性和稳定性。
|
2天前
|
存储 Java 关系型数据库
高效连接之道:Java连接池原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。频繁创建和关闭连接会消耗大量资源,导致性能瓶颈。为此,Java连接池技术通过复用连接,实现高效、稳定的数据库连接管理。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接池的基本操作、配置和使用方法,以及在电商应用中的具体应用示例。
14 5
|
2天前
|
Java 数据格式 索引
使用 Java 字节码工具检查类文件完整性的原理是什么
Java字节码工具通过解析和分析类文件的字节码,检查其结构和内容是否符合Java虚拟机规范,确保类文件的完整性和合法性,防止恶意代码或损坏的类文件影响程序运行。
|
3天前
|
监控 安全 Java
Java多线程编程的艺术与实践
【10月更文挑战第22天】 在现代软件开发中,多线程编程是一项不可或缺的技能。本文将深入探讨Java多线程编程的核心概念、常见问题以及最佳实践,帮助开发者掌握这一强大的工具。我们将从基础概念入手,逐步深入到高级主题,包括线程的创建与管理、同步机制、线程池的使用等。通过实际案例分析,本文旨在提供一种系统化的学习方法,使读者能够在实际项目中灵活运用多线程技术。
|
2天前
|
Java
Java中的多线程编程:从基础到实践
本文深入探讨Java多线程编程,首先介绍多线程的基本概念和重要性,接着详细讲解如何在Java中创建和管理线程,最后通过实例演示多线程的实际应用。文章旨在帮助读者理解多线程的核心原理,掌握基本的多线程操作,并能够在实际项目中灵活运用多线程技术。
|
1天前
|
Java
线程池内部机制:线程的保活与回收策略
【10月更文挑战第24天】 线程池是现代并发编程中管理线程资源的一种高效机制。它不仅能够复用线程,减少创建和销毁线程的开销,还能有效控制并发线程的数量,提高系统资源的利用率。本文将深入探讨线程池中线程的保活和回收机制,帮助你更好地理解和使用线程池。
9 2
|
3天前
|
Java 数据处理 开发者
Java多线程编程的艺术:从入门到精通####
【10月更文挑战第21天】 本文将深入探讨Java多线程编程的核心概念,通过生动实例和实用技巧,引导读者从基础认知迈向高效并发编程的殿堂。我们将一起揭开线程管理的神秘面纱,掌握同步机制的精髓,并学习如何在实际项目中灵活运用这些知识,以提升应用性能与响应速度。 ####
18 3
|
3天前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
25 2
|
2天前
|
Java 开发者
Java中的多线程基础与应用
【10月更文挑战第24天】在Java的世界中,多线程是提高效率和实现并发处理的关键。本文将深入浅出地介绍如何在Java中创建和管理多线程,以及如何通过同步机制确保数据的安全性。我们将一起探索线程生命周期的奥秘,并通过实例学习如何优化多线程的性能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
7 0