《Python数据科学实践指南》一0.2 如何成为数据科学家

简介: 读者应该知道这个问题很难回答,失败的原因总是相似的,成功的经历却各有不同。从来没有人靠复制他人的经历就能获得同样的成就,就像“人不能两次踏入同一条河流”的哲学观点一样,没有人可以复制别人的经历,更何谈成就。

本节书摘来自华章出版社《Python数据科学实践指南》一书中的第0章,第0.1节,纪路 著,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

0.2 如何成为数据科学家

读者应该知道这个问题很难回答,失败的原因总是相似的,成功的经历却各有不同。从来没有人靠复制他人的经历就能获得同样的成就,就像“人不能两次踏入同一条河流”的哲学观点一样,没有人可以复制别人的经历,更何谈成就。因此在回答这个问题时,我只假设一些概念上的前提条件:良好的计算机科学基础,较高的英文读写水平,极强的自学能力,还有一些个人品质比如耐心、毅力、乐于分享,等等。不过最重要的还是“兴趣”,我相信能花上几十块钱购买这本书的读者一定是有兴趣的,因为这本书是给那些对数据科学有一些了解,希望学习具体方法的人准备的。所以,即使上面所说的前提条件你一个都不具备,只要有兴趣,那么让我们从现在就开始吧。
我需要数学或计算机科学的学位吗
最好有!如果你恰好是在校大学生,又碰巧学习数学或计算机相关专业(在这个程序员匮乏的年代,所有必修C语言的专业都称为“计算机相关专业”),希望你能学习好学校的课程,下面是一份技能清单,如果其中有一些技能没有在你的课程安排里,那么最好是通过选修或自学的方式进行补充。
一门编程语言
算法、数据库、操作系统
概率与统计、线性代数
英语
对于已经错过了花季、雨季的社会人来讲,如果你并非从事计算机程序开发的相关工作,上述几项技能对你来说可能要求太高了。不过,你还是需要多付出一些努力来补上这些知识,当然是在读过本书之后。得益于互联网的发达,很多教学资源都能够从网上获取。
这是由布鲁诺·R·普莱斯所著的一系列算法图书的在线版,包括C++版、Java版、C#版、Python版、Ruby版、Lua版、Perl版、PHP版、Objective-C版等,你能想到的常用编程语言都有对应的版本,它们中的一部分有过正式引进的中文版,或者有爱好者翻译的版本,当然推荐阅读原版。
另外,本书会带领读者复习一下概率与统计和线性代数的基本概念,以及介绍一些SQL方面的知识。最后,不要忘记本书的目的是通过数据科学实战学习Python编程。希望读者在读过这本书之后,能有充分的知识来支持后续的学习。

相关文章
|
3月前
|
机器学习/深度学习 数据可视化 数据处理
从基础到进阶:探索Python在数据科学中的应用
【10月更文挑战第18天】从基础到进阶:探索Python在数据科学中的应用
57 1
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
71 2
|
2月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
47 1
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
Python在数据科学中的应用###
本文探讨了Python语言在数据科学领域的广泛应用及其重要性。通过分析Python的简洁语法、强大的库支持和跨平台特性,阐述了为何Python成为数据科学家的首选工具。文章还介绍了Python在数据处理、分析和可视化方面的具体应用实例,展示了其在提升工作效率和推动科学研究方面的巨大潜力。最后,讨论了未来Python在数据科学领域的发展趋势和挑战。 ###
|
2月前
|
机器学习/深度学习 分布式计算 数据可视化
Python在数据科学中的应用与挑战
本文探讨了Python编程语言在数据科学领域的广泛应用及其面临的主要挑战。Python因其简洁的语法、强大的库支持和活跃的社区,已成为数据科学家的首选工具。然而,随着数据量的激增和复杂性的增加,Python也面临着性能瓶颈、内存管理等问题。本文将通过具体案例分析,展示Python在数据处理、分析和可视化方面的优势,同时讨论如何克服其在大规模数据处理中的局限性,为读者提供实用的解决方案和优化建议。
|
2月前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
58 1
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
59 0