算法基础~链表~求两个链表的交点( 时间复杂度O(n)、空间复杂度O(1))

简介: 算法基础~链表~求两个链表的交点( 时间复杂度O(n)、空间复杂度O(1))

  算法基础~链表~求两个链表的交点( 时间复杂度O(n)、空间复杂度O(1))


1,接着上一篇的优化思路:https://www.cnblogs.com/shan333/p/15033376.html

2,还记得上篇中说到:

【为什么要以其中一条链为参照链?  because:链表的长度不一,

 

例如图解(图在上一篇随笔中) A链表的长度明显就是长于B链表的,如果不以其中某一条链表为参照链,则A、B链表不可能相遇!】”~于是乎,咱的思路就呼吁而出啦!

3,设想一下链表A、B长度相同时,A、B同步移动,每移动一个结点便做一次比较地址,当比较的地址相同则找到了交点啦

~【这个过程并不需要额外申请其他空间~空间复杂度O(1);】 【A、B链表是同步移动,可以在同一循环里一起遍历~时间复杂度O(n)】

4,直接上代码,解释在2、3有:


public class Solution { 
  //获取链表的长度
  int get_list_length(ListNode *head){
      int len = 0;
      while(head){
          len++;
          head = head->next;
      }
      return len;
  }
  //对齐链表,将链表长度较长的链表移动到与另外一条链表对齐后返回
  ListNode *forward_long_list(int long_len, int short_len, ListNode *head){
      int delta = long_len - short_len;
      while(head && delta){
          head = head->next;
          delta--;
      }
      return head;
    }
    public :
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB){}
    int list_A_len = get_list_length(headA);
    int list_B_len = get_list_length(headB);
    //A链表比较长时
    if(list_A_len > list_B_len){
        headA = forward_long_list(list_A_len, list_B_len, headA);
    }else{
        headB = forward_long_list(list_B_len, list_A_len, headB);
    }
    //同时遍历A、B链表,比较地址
    while(headA && headB){
        if(headA == headB){
            return headA;
        }
        headA = headA->next;
        headB = headB->next;
    }
    return NULL;
}



目录
相关文章
|
2月前
|
机器学习/深度学习 算法 程序员
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
本文是作者阅读《趣学算法》后的笔记,介绍了算法复杂度的基本概念,包括时间复杂度和空间复杂度的不同阶表示,并通过具体例子展示了如何计算和理解算法的效率。
59 2
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
|
10天前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
在 Python 算法设计中,理解并巧妙运用时间复杂度和空间复杂度的知识,是实现高效、优雅代码的必经之路。通过不断地实践和优化,我们能够在这两个因素之间找到最佳的平衡点,创造出性能卓越的程序。
26 4
|
13天前
|
缓存 算法 数据处理
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
在Python算法中,时间与空间复杂度的平衡至关重要。时间复杂度反映算法执行时间随输入规模的变化趋势,空间复杂度则关注额外存储空间的需求。优秀的算法需兼顾两者,如线性搜索时间复杂度为O(n),空间复杂度为O(1);二分查找在时间效率上显著提升至O(log n),空间复杂度保持为O(1);动态规划通过牺牲O(n)空间换取O(n)时间内的高效计算。实际应用中,需根据具体需求权衡,如实时数据处理重视时间效率,而嵌入式系统更关注空间节约。通过不断优化,我们能在Python中找到最佳平衡点,实现高性能程序。
34 3
|
2月前
|
算法
【算法】合并两个有序链表(easy)——递归算法
【算法】合并两个有序链表(easy)——递归算法
【算法】合并两个有序链表(easy)——递归算法
|
2月前
|
搜索推荐
九大排序算法时间复杂度、空间复杂度、稳定性
九大排序算法的时间复杂度、空间复杂度和稳定性,提供了对各种排序方法效率和特性的比较分析。
77 1
|
2月前
|
存储 算法
【初阶数据结构篇】顺序表和链表算法题
此题可以先找到中间节点,然后把后半部分逆置,最近前后两部分一一比对,如果节点的值全部相同,则即为回文。
|
3月前
|
算法 搜索推荐 数据处理
震惊!Python算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
【7月更文挑战第24天】在编程世界里, Python以简洁强大备受欢迎, 但算法设计与复杂度分析对程序性能至关重要。算法是程序的灵魂, 其效率直接影响数据处理能力。时间复杂度衡量算法执行速度, 如冒泡排序O(n²)与快速排序O(n log n)的显著差异; 空间复杂度关注内存占用, 递归算法需警惕栈溢出风险。优秀算法需平衡时间和空间效率, 深入理解问题本质, 迭代优化实现高效可靠。
34 2
|
3月前
|
算法 Python
算法小白秒变高手?一文读懂Python时间复杂度与空间复杂度,效率翻倍不是梦!
【7月更文挑战第24天】在编程中,算法效率由时间复杂度(执行速度)与空间复杂度(内存消耗)决定。时间复杂度如O(n), O(n^2), O(log n),反映算法随输入增长的耗时变化;空间复杂度则衡量算法所需额外内存。案例对比线性搜索(O(n))与二分搜索(O(log n)),后者利用有序列表显著提高效率。斐波那契数列计算示例中,递归(O(n))虽简洁,但迭代(O(1))更节省空间。掌握这些,让代码性能飞跃,从小白到高手不再是梦想。
47 1
|
2月前
|
算法
【数据结构与算法】共享双向链表
【数据结构与算法】共享双向链表
13 0
|
2月前
|
算法
【数据结构与算法】双向链表
【数据结构与算法】双向链表
13 0
下一篇
无影云桌面