Google Earth Engine——TERN/AET/CMRSET_LANDSAT_V2_1数据集使用CMRSET算法为澳大利亚提供准确的实际蒸散量(AET或ETa)

简介: Google Earth Engine——TERN/AET/CMRSET_LANDSAT_V2_1数据集使用CMRSET算法为澳大利亚提供准确的实际蒸散量(AET或ETa)

This dataset provides accurate actual evapotranspiration (AET or ETa) for Australia using the CMRSET algorithm. The AET band (named 'ETa') contains the average daily value from the CMRSET model for all cloud-free Landsat observations in that month (indicated with value 3 in the AET Data Source QA bits). After the Landsat 7 ETM+ Scan Line Corrector (SLC) failed on 31 May 2003, Landsat 7 ETM+ data are only used if there are no cloud-free Landsat 5 TM or Landsat 8 OLI data for that month. If there is no cloud-free Landsat available, then pixels are infilled with Landsat-VIIRS blended output (indicated with value 2 in the AET Data Source QA bits). If there is no VIIRS available in a month, then missing monthly AET values are linearly interpolated (indicated with value 1 in the AET Data Source QA bits). This means monthly 30 m AET data covering all Australia, with no gaps due to cloud, are available and ready to use.


Accurate AET information is important for irrigation, food security, and environmental management. Like many other parts of the world, water availability in Australia is limited and AET is the largest consumptive component of the water balance. In Australia 70% of available water is used for crop and pasture irrigation. Better monitoring will support improved water use efficiency in this sector, with any water savings available as environmental flows. Additionally, ground-water dependent ecosystems (GDE) occupy a small area yet are "biodiversity hotspots". Knowing their water needs enables enhanced management of these critical areas. AET can also be used to model the catchment water balance. If used in water balance (mass balance) calculations, then this AET value needs to be multiplied by the number of days in the month.

To let the developers know you are using this dataset, to get information on updates, or if you have any questions please contact: tim.mcvicar@csiro.au, tom.vanniel@csiro.au, jamie.vleeshouwer@csiro.au .


数据集使用CMRSET算法为澳大利亚提供准确的实际蒸散量(AET或ETa)。AET波段(命名为 "ETa")包含CMRSET模型对该月所有无云Landsat观测的日均值(在AET数据源QA位中以3值表示)。在2003年5月31日Landsat 7 ETM+扫描线校正器(SLC)失效后,只有在该月没有无云的Landsat 5 TM或Landsat 8 OLI数据时,才会使用Landsat 7 ETM+数据。如果没有可用的无云Landsat,则用Landsat-VIIRS的混合输出来填充像素(在AET数据源QA位中用数值2表示)。如果某月没有VIIRS,那么缺失的月度AET值将被线性内插(在AET数据源QA位中以数值1表示)。这意味着覆盖整个澳大利亚的月度30米AET数据,没有因云层而出现的空白,是可以使用的。

准确的AET信息对灌溉、食品安全和环境管理非常重要。与世界上许多其他地区一样,澳大利亚的水供应是有限的,AET是水平衡中最大的消耗性部分。在澳大利亚,70%的可用水被用于作物和牧场的灌溉。更好的监测将有助于提高该部门的用水效率,任何节水都可以作为环境流量。此外,依赖地下水的生态系统(GDE)所占面积很小,但却是 "生物多样性热点"。了解它们的用水需求,可以加强对这些关键区域的管理。AET也可以用来模拟集水区的水平衡。如果用于水平衡(质量平衡)计算,那么这个AET值需要乘以该月的天数。

要让开发者知道你在使用这个数据集,要获得更新信息,或有任何问题,请联系:tim.mcvicar@csiro.au, tom.vanniel@csiro.au, jamie.vleeshouwer@csiro.au 。

Dataset Availability

2012-02-01T00:00:00 - 2021-02-01T00:00:00

Dataset Provider

TERN Landscapes / CSIRO Land and Water

Collection Snippet

ee.ImageCollection("TERN/AET/CMRSET_LANDSAT_V2_1")

Resolution

30 meters

Bands Table

Name Description Units
ETa Average daily evapotranspiration mm/day
pixel_qa Pixel QA attributes
pixel_qa Bitmask
  • Bits 0-1: AET Data Source
    • 0: N/A (i.e., surrounding oceans)
    • 1: AET value was linearly interpolated.
    • 2: AET value was from CMRSET_VIIRS_LANDSAT_V2_0 blending.
    • 3: AET value was from CMRSET_LANDSAT_V2_0
  • Bit 2: unused
  • Bits 3-7: Number of Landsat observations used for this pixel (0-31).


数据引用:

Guerschman, J.P., McVicar, T.R., Vleeshouwer, Van Niel, T.G., Peña-Arancibia, J.L., and Chen, Y. (2021) Estimating actual evapotranspiration continentally at field-to-landscape scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 reflective data. Journal of Hydrology (In Preparation)

代码:

var dataset = ee.ImageCollection("TERN/AET/CMRSET_LANDSAT_V2_1");
var visualization = {
  bands: ['ETa'],
  min: 1.0,
  max: 7.0,
  palette: ["d7191c","fdae61","ffffbf","abd9e9","2c7bb6"]
};
Map.setCenter(132.0, -27.0, 4);
Map.addLayer(dataset, visualization, "Average daily evaportranspiration");


相关文章
|
7月前
|
机器学习/深度学习 算法 数据库
KNN和SVM实现对LFW人像图像数据集的分类应用
KNN和SVM实现对LFW人像图像数据集的分类应用
112 0
|
26天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
84 4
|
6月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
4月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
6月前
|
存储 算法 Java
Java数据结构与算法:用于高效地存储和检索字符串数据集
Java数据结构与算法:用于高效地存储和检索字符串数据集
|
7月前
|
机器学习/深度学习 人工智能 算法
分类算法入门:以鸢尾花数据集为例(上)
分类算法入门:以鸢尾花数据集为例(上)
277 2
|
7月前
|
机器学习/深度学习 算法 数据可视化
分类算法入门:以鸢尾花数据集为例(下)
分类算法入门:以鸢尾花数据集为例(下)
796 2
|
7月前
|
机器学习/深度学习 分布式计算 并行计算
【机器学习】怎样在非常大的数据集上执行K-means算法?
【5月更文挑战第13天】【机器学习】怎样在非常大的数据集上执行K-means算法?
|
7月前
|
算法 搜索推荐 数据挖掘
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集
|
7月前
|
XML 机器学习/深度学习 算法
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
203 1