Google Earth Engine ——Terra MODIS植被覆盖度(VCF)产品是全球地表植被估计的亚像素级250m分辨率产品

简介: Google Earth Engine ——Terra MODIS植被覆盖度(VCF)产品是全球地表植被估计的亚像素级250m分辨率产品

The Terra MODIS Vegetation Continuous Fields (VCF) product is a sub-pixel-level representation of surface vegetation cover estimates globally. Designed to continuously represent Earth's terrestrial surface as a proportion of basic vegetation traits, it provides a gradation of three surface cover components: percent tree cover, percent non-tree cover, and percent bare. VCF products provide a continuous, quantitative portrayal of land surface cover with improved spatial detail, and hence, are widely used in environmental modeling and monitoring applications.

Generated yearly, the VCF product is produced using monthly composites of Terra MODIS 250 and 500 meters Land Surface Reflectance data, including all seven bands, and Land Surface Temperature.

Documentation:


Terra MODIS植被连续场(VCF)产品是全球地表植被估计的亚像素级表示。它被设计成连续代表地球陆地表面基本植被特征的比例,它提供了三种表面覆盖成分的梯度:树木覆盖百分比、非树木覆盖百分比和裸露百分比。VCF产品提供了一个连续的、定量的土地表面覆盖的描述,具有更好的空间细节,因此,被广泛用于环境建模和监测应用。

VCF产品每年生成一次,使用Terra MODIS 250米和500米地表反射率数据(包括所有七个波段)和地表温度的月度合成物。

Dataset Availability

2000-03-05T00:00:00 - 2020-03-05T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("MODIS/006/MOD44B")

Resolution

250 meters

Bands Table

Name Description Min Max Units Scale
Percent_Tree_Cover Percent of a pixel which is covered by tree canopy 0 100 % 0
Percent_NonTree_Vegetation Percent of a pixel which is covered by non-tree vegetation 0 100 % 0
Percent_NonVegetated Percent of a pixel which is not vegetated 0 100 % 0
Quality Describes those inputs that had poor quality (cloudy, high aerosol, cloud shadow, or view zenith >45°). Each bit in the field represents 1 out of 8 input surface reflectance files to the model. 0
Quality Bitmask
  • Bit 0: State of input layers DOY 065-097
    • 0: Clear
    • 1: Bad
  • Bit 1: State of input layers DOY 113-145
    • 0: Clear
    • 1: Bad
  • Bit 2: State of input layers DOY 161-193
    • 0: Clear
    • 1: Bad
  • Bit 3: State of input layers DOY 209-241
    • 0: Clear
    • 1: Bad
  • Bit 4: State of input layers DOY 257-289
    • 0: Clear
    • 1: Bad
  • Bit 5: State of input layers DOY 305-337
    • 0: Clear
    • 1: Bad
  • Bit 6: State of input layers DOY 353-017
    • 0: Clear
    • 1: Bad
  • Bit 7: State of input layers DOY 033-045
    • 0: Clear
    • 1: Bad
Percent_Tree_Cover_SD Standard deviation (SD) of the 30 models that were used to generate the pixel value in the percent tree cover data layer 0 32767 % 0.01
Percent_NonVegetated_SD Standard deviation (SD) of the 30 models that were used to generate the pixel value in the percent non-vegetated data layer 0 32767 % 0.01
Cloud Clarifies the 'Quality' layer to give the user an indication that the 'bad' data refers to cloudy input data. Each bit in the field represents 1 out of 8 input surface reflectance files to the model. 0
Cloud Bitmask
  • Bit 0: State of input layers DOY 065-097
    • 0: Clear
    • 1: Cloudy
  • Bit 1: State of input layers DOY 113-145
    • 0: Clear
    • 1: Cloudy
  • Bit 2: State of input layers DOY 161-193
    • 0: Clear
    • 1: Cloudy
  • Bit 3: State of input layers DOY 209-241
    • 0: Clear
    • 1: Cloudy
  • Bit 4: State of input layers DOY 257-289
    • 0: Clear
    • 1: Cloudy
  • Bit 5: State of input layers DOY 305-337
    • 0: Clear
    • 1: Cloudy
  • Bit 6: State of input layers DOY 353-017
    • 0: Clear
    • 1: Cloudy
  • Bit 7: State of input layers DOY 033-045
    • 0: Clear
    • 1: Cloudy


使用说明:

MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

数据引用:

Please visit LP DAAC 'Citing Our Data' page for information on citing LP DAAC datasets.

代码:

var dataset = ee.ImageCollection('MODIS/006/MOD44B');
var visualization = {
  bands: ['Percent_Tree_Cover'],
  min: 0.0,
  max: 100.0,
  palette: ['bbe029', '0a9501', '074b03']
};
Map.centerObject(dataset);
Map.addLayer(dataset, visualization, 'Percent Tree Cover');


相关文章
|
计算机视觉
Google Earth Engine(GEE)——使用MODIS数据单点测试SG滤波和harmonics method 滤波的差异分析
Google Earth Engine(GEE)——使用MODIS数据单点测试SG滤波和harmonics method 滤波的差异分析
470 0
Google Earth Engine(GEE)——用填充后的Landsat7影像进行LST地表温度计算(C值转化为K值)
Google Earth Engine(GEE)——用填充后的Landsat7影像进行LST地表温度计算(C值转化为K值)
237 2
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
474 0
|
传感器 编解码 区块链
Google Earth Engine(GEE)——Landsat8/modis/sentinel2 NDVI时序影像差异对比分析图表
Google Earth Engine(GEE)——Landsat8/modis/sentinel2 NDVI时序影像差异对比分析图表
368 0
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之registry.aliyuncs.com/google_containers 镜像仓库的地址是什么
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
1261 0
|
人工智能
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
292 0
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
|
数据采集 编解码 人工智能
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
470 0
|
传感器 编解码 人工智能
Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据
Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据
364 0
Google Earth Engine(GEE)——求指定区域的NDVI时序变化和不同值域范围内的像素数量及其面积
Google Earth Engine(GEE)——求指定区域的NDVI时序变化和不同值域范围内的像素数量及其面积
204 0

热门文章

最新文章