Google Earth Engine ——全球人类住区层(GHSL)数据集

简介: Google Earth Engine ——全球人类住区层(GHSL)数据集

The GHSL relies on the design and implementation of new spatial data mining technologies allowing to automatically process and extract analytics and knowledge from large amount of heterogeneous data including: global, fine-scale satellite image data streams, census data, and crowd sources or volunteered geographic information sources.

These data contain a multitemporal information layer on built-up presence as derived from Landsat image collections (GLS1975, GLS1990, GLS2000, and ad-hoc Landsat 8 collection 2013/2014).

The data have been produced by means of Global Human Settlement Layer methodology in 2015.

For more information visit: Global Human Settlement - GHS BUILT-UP GRID - European Commission and https://ghsl.jrc.ec.europa.eu/documents/GHSL_data_access.pdf.


The Global Human Settlement Layer (GHSL) project is supported by the European Commission, Joint Research Center, and Directorate-General for Regional and Urban Policy. The GHSL produces new global spatial information, evidence-based analytics, and knowledge describing the human presence in the planet.


GHSL依赖于新的空间数据挖掘技术的设计和实施,允许自动处理并从大量的异质数据中提取分析结果和知识,这些数据包括:全球精细的卫星图像数据流、人口普查数据以及人群来源或自愿的地理信息来源。

这些数据包含了从Landsat图像集(GLS1975、GLS1990、GLS2000和2013/2014年特设的Landsat 8图像集)得出的关于建筑存在的多时空信息层。

这些数据是在2015年通过全球人类住区层方法产生的。

欲了解更多信息,请访问。 全球人类住区 - GHS BUILT-UP GRID - 欧盟委员会和


https://ghsl.jrc.ec.europa.eu/documents/GHSL_data_access.pdf


全球人类住区层(GHSL)项目由欧盟委员会、联合研究中心和区域与城市政策总局支持。GHSL产生新的全球空间信息、基于证据的分析和描述人类在地球上存在的知识。

Dataset Availability

1975-01-01T00:00:00 - 2014-12-31T00:00:00

Dataset Provider

EC JRC

Collection Snippet

ee.Image("JRC/GHSL/P2016/BUILT_LDSMT_GLOBE_V1")

Resolution

38 meters

Bands Table

Name Description Min Max
built Multitemporal built-up presence
cnfd Gaps-filled confidence grid on the built-up class aggregated for 2014. 0 = 100% confidence of no built-up, 127 = 50% decision cut off, 255 = 100% conficence of yes built-up 0 255
dm Mosaic of data availability in the different epochs.


Class Table: built

Value Color Color Value Description
1 #0c1d60 Water surface
2 #000000 Land no built-up in any epoch
3 #448564 Built-up from 2000 to 2014 epochs
4 #70daa4 Built-up from 1990 to 2000 epochs
5 #83ffbf Built-up from 1975 to 1990 epochs
6 #ffffff built-up up to 1975 epoch

Class Table: dm

Value Color Color Value Description
1 # No data availability for any epoch
2 # 1975
3 # 1990
4 # 1975 and 1990
5 # 2000
6 # 1975 and 2000
7 # 1990 and 2000
8 # 1975, 1990, and 2000
9 # 2015
10 # 1975 and 2015
11 # 1990 and 2015
12 # 1975, 1990, and 2015
13 # 2000 and 2015
14 # 1975, 2000, and 2015
15 # 1990, 2000. and 2015
16 # 1995, 1190, 2000, and 2015


数据说明和引用:

The GHSL has been produced by the EC JRC as open and free data. Reuse is authorised, provided the source is acknowledged. For more information, please read the use conditions (European Commission Reuse and Copyright Notice).

Pesaresi, Martino; Ehrilch, Daniele; Florczyk, Aneta J.; Freire, Sergio; Julea, Andreea; Kemper, Thomas; Soille, Pierre; Syrris, Vasileios (2015): GHS built-up grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014). European Commission, Joint Research Centre (JRC) [Dataset] PID: Joint Research Centre Data Catalogue - GHS-BUILT R2015B - GHS built-up grid, derived from... - European Commission

Pesaresi, Martino; Ehrlich, Daniele; Florczyk, Aneta J.; Freire, Sergio; Julea, Andreea; Kemper, Thomas; Soille, Pierre; Syrris, Vasileios (2015): GHS built-up confidence grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014). European Commission, Joint Research Centre (JRC) [Dataset] PID: Joint Research Centre Data Catalogue - GHS-BUILT R2015B - GHS built-up confidence grid, d... - European Commission

Pesaresi, Martino; Ehrlich, Daniele; Florczyk, Aneta J.; Freire, Sergio; Julea, Andreea; Kemper, Thomas; Soille, Pierre; Syrris, Vasileios (2015): GHS built-up datamask grid derived from Landsat, multitemporal (1975, 1990, 2000, 2014). European Commission, Joint Research Centre (JRC) [Dataset] PID: Joint Research Centre Data Catalogue - GHS-BUILT R2015B - GHS built-up datamask grid, der... - European Commission

代码:

var dataset = ee.Image('JRC/GHSL/P2016/BUILT_LDSMT_GLOBE_V1');
var builtUpMultitemporal = dataset.select('built');
var visParams = {
  min: 1.0,
  max: 6.0,
  palette: ['0c1d60', '000000', '448564', '70daa4', '83ffbf', 'ffffff'],
};
Map.setCenter(8.9957, 45.5718, 12);
Map.addLayer(builtUpMultitemporal, visParams, 'Built-Up Multitemporal');


相关文章
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
4551 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
2月前
|
机器学习/深度学习 人工智能 算法
Google DeepMind新产物: 行星级卫星嵌入数据集(10m)光学+雷达+DEM+climate...
Google 推出 Earth Engine 卫星嵌入数据集,利用 AI 将一年的多源卫星数据压缩至每个 10 米像素,实现高效地理空间分析。基于 AlphaEarth Foundations 模型,该数据集提供 64 维嵌入向量,支持相似性搜索、变化检测、自动聚类和精准分类,助力环境研究与应用。
293 0
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
523 0
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
1101 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
236 0
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
341 0
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
191 0
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
725 0
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
361 0
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
289 0

热门文章

最新文章

推荐镜像

更多