《机器学习与R语言(原书第2版)》一3.3 总结

简介: 在本章中,我们学习了使用kNN算法进行分类。不同于很多其他的分类算法,kNN并没有进行任何学习,它一字不差地存储训练数据。然后使用一个距离函数将无标记的测试案例与训练数据集中最相似的记录进行匹配,并将无标记案例的邻居的标签分配给它。

本节书摘来自华章出版社《机器学习与R语言(原书第2版)》一书中的第3章,第3.3节,美] 布雷特·兰茨(Brett Lantz) 著,李洪成 许金炜 李舰 译更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.3 总结

在本章中,我们学习了使用kNN算法进行分类。不同于很多其他的分类算法,kNN并没有进行任何学习,它一字不差地存储训练数据。然后使用一个距离函数将无标记的测试案例与训练数据集中最相似的记录进行匹配,并将无标记案例的邻居的标签分配给它。
尽管事实上kNN是一个非常简单的算法,但是它却能够处理极其复杂的任务,比如识别癌细胞的肿块。用简单的几行R代码,就能够以高达98%的准确率识别一个肿块是恶性的还是良性的。
在第4章中,我们将研究使用概率来估计一个观测值落入某些类别中的分类方法,比较该方法与kNN算法有何不同将会很有趣。之后,在第9章中,我们将学习一个与kNN算法很相似的算法,该方法把距离度量用于一个完全不同的学习任务。

相关文章
|
8月前
|
机器学习/深度学习 数据可视化 计算机视觉
【视频】机器学习交叉验证CV原理及R语言主成分PCA回归分析犯罪率|数据共享
【视频】机器学习交叉验证CV原理及R语言主成分PCA回归分析犯罪率|数据共享
|
4月前
|
机器学习/深度学习 数据采集 算法
R语言中的机器学习库:caret与mlr的深度解析
【9月更文挑战第2天】Caret和mlr是R语言中两个非常重要的机器学习库,它们在数据预处理、模型构建、调优和评估等方面提供了丰富的功能。Caret以其易用性和集成性著称,适合初学者和快速原型开发;而mlr则以其全面性和可扩展性见长,适合处理复杂的机器学习项目。在实际应用中,用户可以根据具体需求和项目特点选择合适的库进行开发。无论是学术研究、商业智能还是教育场景,这两个库都能为数据科学家和机器学习爱好者提供强大的支持。
|
6月前
|
机器学习/深度学习 人工智能 算法
没想到!AlphaZero式树搜索也能用来增强大语言模型推理与训练
【7月更文挑战第26天】Xidong Feng等研究人员提出了一项创新方法,通过采用AlphaZero式的树搜索算法来增强大语言模型(LLMs)的推理与训练能力。这项技术,称为TS-LLM(Tree-Search for LLMs),将LLMs的解码过程视为搜索问题,并运用AlphaZero的树搜索来指导这一过程。TS-LLM不仅提升了模型的通用性和适应性,还在多个任务中实现了显著的性能提升。此外,它能在训练阶段指导LLMs学习更优的解码策略。尽管如此,TS-LLM依赖于高质量的预训练LLM,并面临较高的计算成本挑战。[论文](https://arxiv.org/abs/2309.17179)
98 5
|
3月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
126 3
|
3月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
67 2
|
4月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
6月前
|
算法 API 数据中心
魔搭社区利用 NVIDIA TensorRT-LLM 加速开源大语言模型推理
魔搭社区于 2022 年 11 月初创建,首次在业界提出了 “模型即服务”( MaaS, Model as a Service)的理念。
|
8月前
|
数据可视化
R语言机器学习方法分析二手车价格影响因素
R语言机器学习方法分析二手车价格影响因素
|
8月前
|
机器学习/深度学习 算法 数据挖掘
【C 言专栏】C 语言与机器学习的应用
【5月更文挑战第6天】C语言在机器学习中扮演关键角色,以其高效性、灵活性和可移植性实现底层算法、嵌入式系统和高性能计算。在神经网络、决策树和聚类算法等领域的实现中不可或缺。C语言被用于TensorFlow和OpenCV等知名库的底层,常与C++、Python结合使用。尽管面临开发难度和适应新算法的挑战,但C语言在机器学习领域的价值和潜力将持续展现,为科技进步贡献力量。
130 0
【C 言专栏】C 语言与机器学习的应用
|
8月前
|
机器学习/深度学习 数据采集 人工智能
使用R语言进行机器学习的初学者指南
【4月更文挑战第25天】本文是R语言机器学习初学者指南,介绍了R语言在统计分析和机器学习中的应用。首先,简述R语言的背景及特点,包括其丰富的统计功能和扩展性。接着,指导如何安装和配置R语言及RStudio,以及设置国内R包安装源。然后,讲解R语言的基础知识,如数据类型、变量、数据结构和控制结构。此外,文中还推荐了几个常用的机器学习库,如caret、gbm、RandomForest和xgboost。最后,通过一个线性回归模型实例,展示了使用R语言进行机器学习的基本流程,包括数据准备、预处理、模型训练、评估和预测。
226 2