Google Earth Engine ——数据全解析专辑(Copernicus Global Land Cover Layers: CGLS-LC100 Collec)2015 年全球土地分类数据集

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(Copernicus Global Land Cover Layers: CGLS-LC100 Collec)2015 年全球土地分类数据集

Copernicus Global Land Cover Layers: CGLS-LC100 Collection 2

The Copernicus Global Land Service (CGLS) is earmarked as a component of the Land service to operate a multi-purpose service component that provides a series of bio-geophysical products on the status and evolution of land surface at global scale.


The Dynamic Land Cover map at 100 m resolution (CGLS-LC100) is a new product in the portfolio of the CGLS and delivers a global land cover map at 100 m spatial resolution. The CGLS Land Cover product provides a primary land cover scheme. Next to these discrete classes, the product also includes continuous field layers for all basic land cover classes that provide proportional estimates for

vegetation/ground cover for the land cover types. This continuous classification scheme may depict areas of heterogeneous land cover better than the standard classification scheme and, as such, can be tailored for application use (e.g. forest monitoring, crop monitoring, biodiversity and conservation, monitoring environment and security in Africa, climate modelling, etc.).


This Land Cover map is provided for the 2015 reference year over the entire Globe, derived from the PROBA-V 100 m time-series, a database of high quality land cover training sites and several ancillary datasets, reaching an accuracy of 80 % at Level1


哥白尼全球陆地服务 (CGLS) 被指定为陆地服务的一个组成部分,以运营一个多功能服务组件,提供一系列关于全球范围地表状况和演变的生物地球物理产品。

100 m 分辨率的动态土地覆盖图 (CGLS-LC100) 是 CGLS 产品组合中的新产品,可提供 100 m 空间分辨率的全球土地覆盖图。 CGLS Land Cover 产品提供了主要的土地覆盖方案。除了这些离散类别之外,该产品还包括所有基本土地覆盖类别的连续字段图层,为土地覆盖类型的植被/地面覆盖提供比例估计。这种连续分类方案可能比标准分类方案更好地描述异质土地覆盖区域,因此,可以针对应用用途(例如森林监测、作物监测、生物多样性和保护、非洲环境和安全监测、气候建模、等等。)。

该土地覆盖图是为 2015 年全球参考年提供的,源自 PROBA-V 100 m 时间序列、高质量土地覆盖训练站点的数据库和几个辅助数据集,在 Level1 上达到 80% 的准确率

Dataset Availability

2015-01-01T00:00:00 - 2015-01-01T00:00:00

Dataset Provider

Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V/Global")

Resolution

100 meters

Bands Table

Name Description Min Max Units
discrete_classification Land cover classification 0 200
discrete_classification-proba Quality indicator (classification probability) of the discrete classification 0 100 %
forest_type Forest type for all pixels with tree percentage vegetation cover bigger than 1 % 0 5
bare-coverfraction Percent vegetation cover for bare-sparse-vegetation land cover class 0 100 %
crops-coverfraction Percent vegetation cover for cropland land cover class 0 100 %
grass-coverfraction Percent vegetation cover for herbaceous vegetation land cover class 0 100 %
moss-coverfraction Percent vegetation cover for moss and lichen land cover class 0 100 %
shrub-coverfraction Percent vegetation cover for shrubland land cover class 0 100 %
tree-coverfraction Percent vegetation cover for forest land cover class 0 100 %
snow-coverfraction Percent ground cover for snow and ice land cover class 0 100 %
urban-coverfraction Percent ground cover for built-up land cover class 0 100 %
water-permanent-coverfraction Percent ground cover for permanent water land cover class 0 100 %
water-seasonal-coverfraction Percent ground cover for seasonal water land cover class 0 100 %
data-density-indicator Data density indicator for algorithm input data 0 100
bare-coverfraction-stddev Quality indicator (std. dev.) of the bare-sparse-vegetation regression 0 100 %
crops-coverfraction-stddev Quality indicator (std. dev.) of the cropland regression 0 100 %
grass-coverfraction-stddev Quality indicator (std. dev.) of the herbaceous vegetation regression 0 100 %
moss-coverfraction-stddev Quality indicator (std. dev.) of the moss and lichen regression 0 100 %
shrub-coverfraction-stddev Quality indicator (std. dev.) of the shrubland regression 0 100 %
tree-coverfraction-stddev Quality indicator (std. dev.) of the forest regression 0 100 %


Class Table: discrete_classification

Value Color Color Value Description
0 #282828 Unknown. No or not enough satellite data available.
20 #FFBB22 Shrubs. Woody perennial plants with persistent and woody stems and without any defined main stem being less than 5 m tall. The shrub foliage can be either evergreen or deciduous.
30 #FFFF4C Herbaceous vegetation. Plants without persistent stem or shoots above ground and lacking definite firm structure. Tree and shrub cover is less than 10 %.
40 #F096FF Cultivated and managed vegetation / agriculture. Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
50 #FA0000 Urban / built up. Land covered by buildings and other man-made structures.
60 #B4B4B4 Bare / sparse vegetation. Lands with exposed soil, sand, or rocks and never has more than 10 % vegetated cover during any time of the year.
70 #F0F0F0 Snow and ice. Lands under snow or ice cover throughout the year.
80 #0032C8 Permanent water bodies. Lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies.
90 #0096A0 Herbaceous wetland. Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.
100 #FAE6A0 Moss and lichen.
111 #58481F Closed forest, evergreen needle leaf. Tree canopy >70 %, almost all needle leaf trees remain green all year. Canopy is never without green foliage.
112 #009900 Closed forest, evergreen broad leaf. Tree canopy >70 %, almost all broadleaf trees remain green year round. Canopy is never without green foliage.
113 #70663E Closed forest, deciduous needle leaf. Tree canopy >70 %, consists of seasonal needle leaf tree communities with an annual cycle of leaf-on and leaf-off periods.
114 #00CC00 Closed forest, deciduous broad leaf. Tree canopy >70 %, consists of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.
115 #4E751F Closed forest, mixed.
116 #007800 Closed forest, not matching any of the other definitions.
121 #666000 Open forest, evergreen needle leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, almost all needle leaf trees remain green all year. Canopy is never without green foliage.
122 #8DB400 Open forest, evergreen broad leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, almost all broadleaf trees remain green year round. Canopy is never without green foliage.
123 #8D7400 Open forest, deciduous needle leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, consists of seasonal needle leaf tree communities with an annual cycle of leaf-on and leaf-off periods.
124 #A0DC00 Open forest, deciduous broad leaf. Top layer- trees 15-70 % and second layer- mixed of shrubs and grassland, consists of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.
125 #929900 Open forest, mixed.
126 #648C00 Open forest, not matching any of the other definitions.
200 #000080 Oceans, seas. Can be either fresh or salt-water bodies.


Class Table: forest_type

Value Color Color Value Description
0 #282828 Unknown
1 #666000 Evergreen needle leaf
2 #009900 Evergreen broad leaf
3 #70663E Deciduous needle leaf
4 #A0DC00 Deciduous broad leaf
5 #929900 Mix of forest types

 

影像信息:

Name Type Description
discrete_classification_class_names List of Strings Land cover class names
discrete_classification_class_palette List of Strings Land cover class palette
discrete_classification_class_values List of Ints Value of the land cover classification.
forest_type_class_names List of Strings forest cover class names
forest_type_class_palette List of Strings forest cover class palette
forest_type_class_values List of Ints forest cover class values


代码:

var dataset = ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V/Global");
var visualization = {
  bands: ['discrete_classification']
};
Map.setCenter(-88.6, 26.4, 1);
Map.addLayer(dataset, visualization, "Land Cover");


影像:


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2543 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
227 0
|
4月前
|
编解码 定位技术
Cesium案例解析(七)——Layers在线地图服务
Cesium案例解析(七)——Layers在线地图服务
50 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
598 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
115 0
|
13天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
44 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
70 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
57 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
62 0
|
2月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
84 0

推荐镜像

更多