Google Earth Engine ——数据全解析专辑(CSP/ERGo/1_0/Global/ALOS_landforms)ALOS 地貌数据集

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Google Earth Engine ——数据全解析专辑(CSP/ERGo/1_0/Global/ALOS_landforms)ALOS 地貌数据集

The ALOS Landform dataset provides landform classes created by combining the Continuous Heat-Insolation Load Index (ALOS CHILI) and the multi-scale Topographic Position Index (ALOS mTPI) datasets. It is based on the 30m "AVE" band of JAXA's ALOS DEM (available in EE as JAXA/ALOS/AW3D30_V1_1).

 

The Conservation Science Partners (CSP) Ecologically Relevant Geomorphology (ERGo) Datasets, Landforms and Physiography contain detailed, multi-scale data on landforms and physiographic (aka land facet) patterns. Although there are many potential uses of these data, the original purpose for these data was to develop an ecologically relevant classification and map of landforms and physiographic classes that are suitable for climate adaptation planning. Because there is large uncertainty associated with future climate conditions and even more uncertainty around ecological responses, providing information about what is unlikely to change offers a strong foundation for managers to build robust climate adaptation plans. The quantification of these features of the landscape is sensitive to the resolution, so we provide the highest resolution possible given the extent and characteristics of a given index.


ALOS 地貌数据集提供了通过组合连续热辐射负荷指数 (ALOS CHILI) 和多尺度地形位置指数 (ALOS mTPI) 数据集而创建的地貌类。它基于 JAXA 的 ALOS DEM(在 EE 中作为 JAXA/ALOS/AW3D30_V1_1 可用)的 30m“AVE”频段。


保护科学合作伙伴 (CSP) 生态相关地貌学 (ERGo) 数据集、地貌和地貌包含有关地貌和地貌(又名土地面)模式的详细的多尺度数据。尽管这些数据有许多潜在用途,但这些数据的最初目的是开发适合气候适应规划的地貌和地貌类别的生态相关分类和地图。由于未来气候条件存在很大的不确定性,生态响应的不确定性甚至更大,因此提供有关不太可能发生变化的信息为管理者制定稳健的气候适应计划提供了坚实的基础。景观的这些特征的量化对分辨率很敏感,因此在给定指数的范围和特征的情况下,我们提供可能的最高分辨率。


Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.Image("CSP/ERGo/1_0/Global/ALOS_landforms")

Resolution

90 meters

Bands Table

Name Description
constant ALOS-derived landform classes


Class Table: constant

Value Color Color Value Description
11 #141414 Peak/ridge (warm)
12 #383838 Peak/ridge
13 #808080 Peak/ridge (cool)
14 #EBEB8F Mountain/divide
15 #F7D311 Cliff
21 #AA0000 Upper slope (warm)
22 #D89382 Upper slope
23 #DDC9C9 Upper slope (cool)
24 #DCCDCE Upper slope (flat)
31 #1C6330 Lower slope (warm)
32 #68AA63 Lower slope
33 #B5C98E Lower slope (cool)
34 #E1F0E5 Lower slope (flat)
41 #a975ba Valley
42 #6f198c Valley (narrow)


数据引用:

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., & Albano, C. M. (2015). Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PloS one, 10(12), e0143619

代码:

var dataset = ee.Image('CSP/ERGo/1_0/Global/ALOS_landforms');
var landforms = dataset.select('constant');
var landformsVis = {
  min: 11.0,
  max: 42.0,
  palette: [
    '141414', '383838', '808080', 'EBEB8F', 'F7D311', 'AA0000', 'D89382',
    'DDC9C9', 'DCCDCE', '1C6330', '68AA63', 'B5C98E', 'E1F0E5', 'a975ba',
    '6f198c'
  ],
};
Map.setCenter(-105.58, 40.5498, 11);
Map.addLayer(landforms, landformsVis, 'Landforms');


目录
打赏
0
0
0
0
213
分享
相关文章
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
117 4
JSON数据解析实战:从嵌套结构到结构化表格
Bilibili直播信息流:连接方法与数据解析
本文详细介绍了自行实现B站直播WebSocket连接的完整流程。解析了基于WebSocket的应用层协议结构,涵盖认证包构建、心跳机制维护及数据包解析步骤,为开发者定制直播数据监控提供了完整技术方案。
【实战解析】smallredbook.item_get_video API:小红书视频数据获取与电商应用指南
本文介绍小红书官方API——`smallredbook.item_get_video`的功能与使用方法。该接口可获取笔记视频详情,包括无水印直链、封面图、时长、文本描述、标签及互动数据等,并支持电商场景分析。调用需提供`key`、`secret`和`num_iid`参数,返回字段涵盖视频链接、标题、标签及用户信息等。同时,文章提供了电商实战技巧,如竞品监控与个性化推荐,并列出合规注意事项及替代方案对比。最后解答了常见问题,如笔记ID获取与视频链接时效性等。
如何高效爬取天猫商品数据?官方API与非官方接口全解析
本文介绍两种天猫商品数据爬取方案:官方API和非官方接口。官方API合法合规,适合企业长期使用,需申请企业资质;非官方接口适合快速验证需求,但需应对反爬机制。详细内容涵盖开发步骤、Python实现示例、反爬策略、数据解析与存储、注意事项及扩展应用场景。推荐工具链包括Playwright、aiohttp、lxml等。如需进一步帮助,请联系作者。
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
3156 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
149 0
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
223 0
|
11月前
|
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
120 0
|
11月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
434 0
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
202 0

推荐镜像

更多