————— 第二天 —————
小灰的思路如下:
第一步,利用迪杰斯特拉算法的距离表,求出从顶点A出发,到其他各个顶点的最短距离:
第二步,继续使用迪杰斯特拉算法,求出从顶点B出发,到其他各个顶点的最短距离。
第三步,从顶点C出发,到各个顶点的最短距离。
第四步,从顶点D出发......
.......
就像这样,一直遍历到顶点G。
这个思路的时间复杂度是多少呢?
假如图中有n个顶点,如果不考虑堆优化,一次迪杰斯特拉算法的时间复杂度是O(n^2)。所以,把每一个顶点都计算一遍,总的时间复杂度是O(n^3)。
————————————
举一个栗子:
上图的顶点A和顶点C没有直接相连的边,它们之间的直接距离是无穷大。
如果以B作为“中继顶点”,此时A到C的最短路径就是A-B-C,最短距离是3+2=5。
再举一个栗子:
上图的顶点A和顶点C直接相连,距离是6。但是存在一条“迂回”路径A-B-C,距离是3+2=5<6。
所以,经过中继顶点B,从A到C的最短距离可以是5。
下面我们来看一看Floyd算法的详细步骤。
1.要实现Floyd算法,首先需要构建带权图的邻接矩阵:
在邻接矩阵当中,每一个数字代表着从某个顶点到另一个顶点的直接距离,这个距离是没有涉及到任何中继顶点的。
2.此时假定只允许以顶点A作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
B和C之间的距离原本是无穷大,此时以A为中继,距离缩短为AB距离+AC距离=
5+2=7。
更新对应矩阵元素(橙色区域代表顶点A到其他顶点的临时距离):
3.接下来以顶点A、B作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
A和D之间的距离原本是无穷大,此时以B为中继,距离缩短为AB距离+BD距离=5+1=6。
A和E之间的距离原本是无穷大,此时以B为中继,距离缩短为AB距离+BE距离=5+6=11。
更新对应矩阵元素(橙色区域代表顶点B到其他顶点的临时距离):
4.接下来以顶点A、B、C作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
A和F之间的距离原本是无穷大,此时以C为中继,距离缩短为AC距离+CF距离=2+8=10。
更新对应矩阵元素(橙色区域代表顶点C到其他顶点的临时距离):
.........
.........
以此类推,我们不断引入新的中继顶点,不断刷新矩阵中的临时距离。
最终,当所有顶点都可以作为中继顶点时,我们的距离矩阵更新如下:
此时,矩阵中每一个元素,都对应着某顶点到另一个顶点的最短距离。
为什么这么说呢?让我们回顾一下动态规划的两大要素:
问题的初始状态问题的状态转移方程式
对于寻找图的所有顶点之间距离的问题,初始状态就是顶点之间的直接距离,也就是邻接矩阵。
而问题的状态转移方程式又是什么呢?
假设新引入的中继顶点是n,那么:
顶点i 到 顶点j 的新距离 = Min(顶点i 到 顶点j 的旧距离,顶点i 到 顶点n 的距离+顶点n 到 顶点j 的距离)
final static int INF = Integer . MAX_VALUE ; public static void floyd ( int [][] matrix ){ //循环更新矩阵的值 for ( int k = 0 ; k < matrix . length ; k ++){ for ( int i = 0 ; i < matrix . length ; i ++){ for ( int j = 0 ; j < matrix . length ; j ++){ if ( matrix [ i ][ k ] == INF || matrix [ k ][ j ] == INF ) { continue ; } matrix [ i ][ j ] = Math . min ( matrix [ i ][ j ], matrix [ i ][ k ] + matrix [ k ][ j ]); } } } // 打印floyd最短路径的结果 System . out . printf ( "最短路径矩阵: \n" ); for ( int i = 0 ; i < matrix . length ; i ++) { for ( int j = 0 ; j < matrix . length ; j ++) System . out . printf ( "%3d " , matrix [ i ][ j ]); System . out . printf ( "\n" ); } } public static void main ( String [] args ) { int [][] matrix = { { 0 , 5 , 2 , INF , INF , INF , INF }, { 5 , 0 , INF , 1 , 6 , INF , INF }, { 2 , INF , 0 , 6 , INF , 8 , INF }, { INF , 1 , 6 , 0 , 1 , 2 , INF }, { INF , 6 , INF , 1 , 0 , INF , 7 }, { INF , INF , 8 , 2 , INF , 0 , 3 }, { INF , INF , INF , INF , 7 , 3 , 0 } }; floyd ( matrix ); }