hive窗口函数/分析函数详细剖析(一)

简介: hive窗口函数/分析函数

hive窗口函数/分析函数


在sql中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的。但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数。窗口函数又叫OLAP函数/分析函数,窗口函数兼具分组和排序功能。


窗口函数最重要的关键字是 partition by 和 order by。


具体语法如下:over (partition by xxx order by xxx)


sum,avg,min,max 函数


准备数据


建表语句:
create table bigdata_t1(
cookieid string,
createtime string,   --day 
pv int
) row format delimited 
fields terminated by ',';
加载数据:
load data local inpath '/root/hivedata/bigdata_t1.dat' into table bigdata_t1;
cookie1,2018-04-10,1
cookie1,2018-04-11,5
cookie1,2018-04-12,7
cookie1,2018-04-13,3
cookie1,2018-04-14,2
cookie1,2018-04-15,4
cookie1,2018-04-16,4
开启智能本地模式
SET hive.exec.mode.local.auto=true;


SUM函数和窗口函数的配合使用:结果和ORDER BY相关,默认为升序。


#pv1
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime) as pv1 
from bigdata_t1;
#pv2
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between unbounded preceding and current row) as pv2
from bigdata_t1;
#pv3
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid) as pv3
from bigdata_t1;
#pv4
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and current row) as pv4
from bigdata_t1;
#pv5
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5
from bigdata_t1;
#pv6
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime rows between current row and unbounded following) as pv6
from bigdata_t1;
pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号
pv2: 同pv1
pv3: 分组内(cookie1)所有的pv累加
pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号,
                         13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号
pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21
pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13,
               14号=14号+15号+16号=2+4+4=10


如果不指定rows between,默认为从起点到当前行;


如果不指定order by,则将分组内所有值累加;


关键是理解rows between含义,也叫做window子句:


preceding:往前


following:往后


current row:当前行


unbounded:起点


unbounded preceding 表示从前面的起点


unbounded following:表示到后面的终点


AVG,MIN,MAX,和SUM用法一样。


row_number,rank,dense_rank,ntile 函数


准备数据


cookie1,2018-04-10,1
cookie1,2018-04-11,5
cookie1,2018-04-12,7
cookie1,2018-04-13,3
cookie1,2018-04-14,2
cookie1,2018-04-15,4
cookie1,2018-04-16,4
cookie2,2018-04-10,2
cookie2,2018-04-11,3
cookie2,2018-04-12,5
cookie2,2018-04-13,6
cookie2,2018-04-14,3
cookie2,2018-04-15,9
cookie2,2018-04-16,7
CREATE TABLE bigdata_t2 (
cookieid string,
createtime string,   --day 
pv INT
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile;
加载数据:
load data local inpath '/root/hivedata/bigdata_t2.dat' into table bigdata_t2;


  • ROW_NUMBER()使用


ROW_NUMBER()从1开始,按照顺序,生成分组内记录的序列。


SELECT 
cookieid,
createtime,
pv,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn 
FROM bigdata_t2;


  • RANK 和 DENSE_RANK使用


RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位 。


DENSE_RANK()生成数据项在分组中的排名,排名相等会在名次中不会留下空位。


SELECT 
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
FROM bigdata_t2 
WHERE cookieid = 'cookie1';
相关文章
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
42 4
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
46 2
|
1月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
37 2
|
6月前
|
SQL HIVE
hive高频函数(一)
hive高频函数(一)
56 0
|
2月前
|
SQL JavaScript 前端开发
Hive根据用户自定义函数、reflect函数和窗口分析函数
Hive根据用户自定义函数、reflect函数和窗口分析函数
35 6
|
2月前
|
SQL JavaScript 前端开发
Hive学习-lateral view 、explode、reflect和窗口函数
Hive学习-lateral view 、explode、reflect和窗口函数
41 4
|
5月前
|
SQL 数据采集 数据可视化
基于Hive的招聘网站的大数据分析系统
基于Hive的招聘网站的大数据分析系统
130 2
|
5月前
|
SQL 关系型数据库 MySQL
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
195 0
|
6月前
|
SQL XML JSON
Hive函数全解——思维导图 + 七种函数类型
Hive函数全解——思维导图 + 七种函数类型
137 2
Hive函数全解——思维导图 + 七种函数类型
|
6月前
|
SQL 数据采集 存储
Hive实战 —— 电商数据分析(全流程详解 真实数据)
关于基于小型数据的Hive数仓构建实战,目的是通过分析某零售企业的门店数据来进行业务洞察。内容涵盖了数据清洗、数据分析和Hive表的创建。项目需求包括客户画像、消费统计、资源利用率、特征人群定位和数据可视化。数据源包括Customer、Transaction、Store和Review四张表,涉及多个维度的聚合和分析,如按性别、国家统计客户、按时间段计算总收入等。项目执行需先下载数据和配置Zeppelin环境,然后通过Hive进行数据清洗、建表和分析。在建表过程中,涉及ODS、DWD、DWT、DWS和DM五层,每层都有其特定的任务和粒度。最后,通过Hive SQL进行各种业务指标的计算和分析。
982 1
Hive实战 —— 电商数据分析(全流程详解 真实数据)
下一篇
无影云桌面