实时计算 Flink版产品使用问题之kafka2hive同步数据时,如何回溯历史数据

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flink中,join如果不指定窗口,会把join结果一直存储下来吗?

flink中,join如果不指定窗口,会把join结果一直存储下来吗?



参考答案:

Apache Flink 中,如果不指定窗口进行 join,join 结果不会无限期地存储下来。在无窗口的情况下进行 join,Flink 会根据数据流的到达顺序和关联键进行即时 join。也就是说,每一对符合 join 条件的数据元素到达时,就会立即执行 join 操作并生成结果。

对于无界流处理,如果不指定时间窗口或者滑动窗口等窗口机制,Flink 的流式 join(比如基于 KeyedStream 的 join)会假设两边流的数据都是无界的,并且 join 操作是基于事件时间(event-time)或者处理时间(processing-time)的即时关系进行的。在这种情况下,join 结果会随数据流动态产出,但不会长久存储,除非显式地将结果存储到外部系统(如数据库、消息队列或文件系统)中。

对于批处理模式,Flink 会一次性处理完所有的数据,join 操作的结果会被完整计算出来,但这并不是因为 join 操作本身存储了结果,而是因为它是在有限数据集上执行的。

简而言之,无论是在流处理还是批处理模式下,Flink 的 join 操作本身都不会持久化 join 结果,除非你使用了诸如侧输出流(side output)或外部存储机制来保存结果。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605125



问题二:Flink有人有玩过这样的需求不?

Flink有人有玩过这样的需求不? 就是用户事件行为数据(埋点数据)在kafka中,数据是一个通用格式,每个事件有自己独立的属性,多个事件可能有相同的属性字段; 现在需要推测数据类型+落到下游存储(hologres/ starocks /doris 等)事件明细数据(dwd曾); 同一事件数据可能属性字段会变动增加,因此需要 下游存储自动修改表结构

类似CTAS功能的



参考答案:

flink cdc 3.0 整库同步可以抄一下



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605120



问题三:如果sink表建表字段过短,有数据不能插入,有啥策略配置能丢弃这些不合格的数据吗?

如果sink表建表字段过短,有数据不能插入,有啥策略配置能丢弃这些不合格的数据吗?

configuration.set(ExecutionConfigOptions.TABLE_EXEC_SINK_TYPE_LENGTH_ENFORCER, ExecutionConfigOptions.TypeLengthEnforcer.IGNORE);

这个好像没有啥用啊,有大佬知道Flink这个怎么解决吗?



参考答案:

在 Apache Flink 中,如果你遇到因为目标表(sink)的字段长度过短,导致数据插入失败的问题,通常需要根据你的具体场景和使用的连接器(如 JDBC、Kafka、文件系统等)来寻找合适的解决方案。

对于 JDBC 连接器来说,Flink 并没有直接提供在写入时丢弃长度超标的字段数据的配置选项。你提到的 ExecutionConfigOptions.TABLE_EXEC_SINK_TYPE_LENGTH_ENFORCER 配置项是用于控制类型长度检查的严格程度,但它并不能直接实现丢弃不合格数据的功能。

解决这类问题的一般策略包括:

  1. 数据清洗:在数据写入 sink 之前,对数据进行清洗和转换,确保所有字段的长度符合目标表的要求。这可以通过 Flink 的 MapFunction、FlatMapFunction 或 ProcessFunction 来实现。
  2. 自定义 Sink:如果你使用的连接器不支持直接丢弃不合格数据,你可以考虑自定义一个 Sink,在写入数据前进行长度检查,并丢弃或截断超长的字段。
  3. 修改目标表结构:如果可能的话,调整目标表的结构,增加字段长度,以容纳可能的长数据。
  4. 使用错误处理策略:Flink 的某些连接器可能支持错误处理策略,比如重试、失败或跳过。你可以查看你使用的连接器文档,看是否有相关的配置选项。
  5. 日志记录:如果你只是想记录那些因为长度问题而未能插入的数据,你可以在数据清洗或自定义 Sink 的过程中,将这类数据记录到日志或另一个输出中。

对于你提到的配置选项 ExecutionConfigOptions.TABLE_EXEC_SINK_TYPE_LENGTH_ENFORCER,它的作用是控制类型长度检查的严格性。这个选项有三个值:

  • STRICT:默认选项,当字段长度超出目标表定义时,会抛出异常。
  • WARN:当字段长度超出时,会记录警告但不会抛出异常。但请注意,这并不意味着数据会被成功写入;它可能只是不会在 Flink 任务中直接抛出异常,但目标数据库可能仍然会因为数据长度问题而拒绝插入。
  • IGNORE:忽略类型长度检查。但这并不意味着超长的数据会被截断或丢弃;它只是跳过了长度检查这一步,而数据是否成功写入仍然取决于目标数据库。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605119



问题四:Flink目前hive-server2 endpoint 支持提交到不同集群么?

Flink目前hive-server2 endpoint 支持提交到不同集群么,还是说只支持绑定当前host集群, 如果上k8s的话需要每个cluster部署一个伴生hive-server2 endpoint么?



参考答案:

session 集群的话 set 下 rest 的地址就可以了。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605115



问题五:请教下,kafka2hive采用flinksql同步数据,如果想要回溯历史数据,应该怎么做呢?

请教下,kafka2hive采用flinksql同步数据,如果想要回溯历史数据,应该怎么做呢?是跑批任务一个小时一个小时回溯呢?还是跑一个流任务从指定offset一直运行呢?



参考答案:

在 Apache Flink 中使用 Flink SQL 实现 Kafka 到 Hive 的数据同步,并且想要回溯历史数据时,您可以采取不同的策略,具体取决于您的需求、数据量、资源限制以及架构设计。这里有两个常见的方法:

  1. 批量回溯任务:
  • 如果您希望通过按小时或其他固定时间段分批次的方式回溯历史数据,可以编写一系列的批处理作业,每个作业从 Kafka 的特定时间点(由偏移量或时间戳确定)开始消费,直到下一个时间点为止。这样做的好处是可以控制每次作业处理的数据量,避免一次性加载大量历史数据对系统造成压力。
  • 在 Flink SQL 中,可以通过 CREATE TABLE 语句时指定 Kafka 的起始偏移量来实现这一点。例如,针对每个时间段分别执行 SQL 作业,指定不同时间段的起始偏移量。
  1. 流式回溯任务:
  • 另一种方式是运行一个长期运行的流处理任务,从指定的历史偏移量开始消费 Kafka 数据,然后持续处理新产生的数据。
  • 使用 Flink SQL 创建 Kafka 表源时,可以指定一个初始偏移量(如 earliest 或某个具体的偏移量值),让任务从那个位置开始读取数据,并持续不断地将数据同步到 Hive。

考虑到时效性和资源效率,通常建议:

  • 对于短期的历史数据补录,可以一次性或分批完成回溯任务。
  • 对于长时间跨度的历史数据迁移,或者需要持续保持 Kafka 和 Hive 之间数据同步的场景,则更适合选择流式任务从某个历史时刻的偏移量开始连续处理。

在设计任务时,请务必注意 Kafka topic 的保留策略和数据清理规则,确保在回溯过程中所需的历史数据仍然存在于 Kafka 中。同时,也请确保 Hive 端有足够的存储空间和合理的分区设计以便接收和存储回溯的数据。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605113

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
19小时前
|
Java 关系型数据库 数据库
实时计算 Flink版操作报错合集之拉取全量数据时,如何解决Checkpoint失败并且报错为 "java.lang.OutOfMemoryError: Java heap space"
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
19小时前
|
消息中间件 Kafka 数据处理
实时计算 Flink版操作报错合集之使用kafka connector时,报错:java.lang.ClassNotFoundException,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
20小时前
|
监控 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在进行全量数据初始化时,连接器一般会采用什么策略
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
20小时前
|
Oracle 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在从SQLServer捕获数据变更(CDC)时,开启CDC功能后对应的表中没有记录变化数据,是什么原因
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
20小时前
|
存储 关系型数据库 MySQL
实时计算 Flink版产品使用问题之处理包含时间戳并且希望在摄取、转换或输出时考虑特定时区的CDC数据,该如何操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
20小时前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用问题之在从MySQL同步数据到Doris时,delete语句无法同步,是什么原因
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
20小时前
|
消息中间件 Kafka 数据库
实时计算 Flink版产品使用问题之如何对CDC数据进行窗口分组和聚合操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之通过flink同步kafka数据进到doris,decimal数值类型的在kafka是正常显示数值,但是同步到doris表之后数据就变成了整数,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之 从Kafka读取数据,并与两个仅在任务启动时读取一次的维度表进行内连接(inner join)时,如果没有匹配到的数据会被直接丢弃还是会被存储在内存中
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
946 0

热门文章

最新文章

相关产品

  • 实时计算 Flink版