FPT: Feature Pyramid Transfomer

简介: 本文介绍了一个在空间和尺度上全活跃特征交互(fully active feature interaction across both space and scales)的特征金字塔transformer模型,简称FPT。该模型将transformer和Feature Pyramid结合,可用于像素级的任务,在论文中作者进行了目标检测和实力分割,都取得了比较好的效果。为了讲解清楚,若有transformer不懂的读者,关于transformer可以在公众号中看另一篇文《Transformer解读》

背景内容


图像中在空间和尺度上隐藏着丰富的视觉语义信息,对于一个CNN模型来说要获取这些语义信息,需要通过卷积操作不断提取,但每次的感受野都比较小,每次仅能提取3x3 或5x5等小范围的信息,如果需要获取全局信息,需要将堆积多层卷积层。对此,有研究人员提出了Non-Local Neural Network, 简称NLN,在将卷积层中非局部的信息匹配起来(注:NLN在后续将会给出论文解读文章,后续看到本文的读者在公众号中模型总结部分将能看到)。但本文认为NLN没有跨尺度,而只进行了跨空间提取信息。基于此,本文应运而生。FPT将特征金字塔的每层与其他同大小但有不同丰富语义信息的层进行交互融合,提出了三种交互方式,分别是self-level,top-down 和bottom-up。

d5c513f0270a6ec06e861d82f47af99c.png

作者认为通过使用不同level的feature map可以识别目标的不同尺度。例如,小物体(电脑)应该在比较低的level下识别,大的物体(桌椅)应该在更高的level识别。因此我们需要去结合局部信息和来自于higher level的全局信息,这是因为电脑显示屏的局部外观是接近于电视机的,我们应该使用场景信息例如鼠标,键盘来辅助识别电视机和电脑。此外,作者认为电脑更可能是在桌子上,而不是大马路上,因此局部信息和全局信息的结合是有助于互相识别的。而且,作者认为非局部交互应该是在物体相应的尺度上,而不是一个统一的尺度。如鼠标跟电脑大小相差太大,在同尺度下信息不一样。


Overall structure of FPT


9a7c686888c0432a7053dd0bd36759d4.png

FPT网络由四个部分组成:特征提取的backbone, 特征金字塔构造模块,用于特征交互的FPT,以及具体任务的head网络。该模型可用于语义分割,实例分割和目标检测,因此,这个head 网络都是对应到具体任务中的最后处理部分。


Non Local Block

这里略微介绍一下Non Local Neural Network,过几天会给出这篇文章的论文解读,将放在公众号中的模型总结部分。


bccb96c33b014070da1dc01fb8b6cae3.png

先使用点积计算q 和 k的相似度,再进行归一化(softmax),再与values进行相乘。

在FPT中提出了三种操作方式,分别以self-level, higher-level, lower-level作为其他level的queries,这样使得每一level都是一个跨空间和尺度交互的richer feature map。下面将介绍这三种方式。先提一句,这三种方式最主要的区别就是Q不同,还有个别细节不同。


注意下面给出的三种方式下给出的图中的纹理区别


01 Self Transformer (ST)

dd4a013eefa8a92eb2fa0e15ed729500.png


85fa3b74c177b50d96c7e066390966fe.png

如上左图所示,输出为#字形纹理的图,所谓self-transformer即使用self-attention的交互操作,Q = K = V。


具体公式如上方所示,不同的是,作者使用Mixture of Softmaxes (Mos)代替softmax归一化,MoS公式如下,原因是实践证明在图像上MoS比标准softmax更有效。


b7434eac39d290f275782fa6518a2d0d.png

因此其公式如下:


14ab574392475077b6c765ca4297c13a.png

02 Grounding Transformer (GT)


4eeda216033cada39ea7539d9d126fc0.png

 以higher-level为k, v , 以lower-level为 Q, 输出为\\形纹理。


   具体公式仍如上方所示,与ST中一样归一化函数使用MoS,不同的是相似度函数从点积改为了欧式距离(euclidean distance),原因是当两张feature map的语义信息不同时,欧式距离比点积计算更有效。,欧式距离公式如下。


 ce68090e3fafdef08989f03087ae3901.png

 其公式如下:


10ad20825a623826dd93df5a4b804c80.png



注:当具体任务为语义分割时,作者认为没必要计算全局的相似性,只需要计算局部相似性即可,因此在前面的基础上提出了Locality-constrained Grounding Transformer (LGT)。局部的大小为square_size, 对于k,v中超过索引位置,使用0代替。

 

03 Rending Transformer (RT)


bad5dafba888a8b33112cfc45d5e8612.png

154508eb47c5371d511b80376768c0ed.png

如上图所示,使用lower-level作为k,v 使用higher-level作为Q, 输出纹理为//形的图。


与前两者基于像素级别不同的是RT是基于整个feature map,做法类似于SE注意模块,k先使用全局平均池化(GAP)得到加权值w, w再与Q以通道注意方式进行加权得到Qatt, V使用含步长的3x3卷积 feature map进行降采样处理, 这是为了缩小特征图大小,最后改进版的Qatt与降采样的V进行summed-up, 即使用3x 3卷积进行feature map summation。


具体公式如下所示:

 

b22960072d8aa75d163781a831cb0d42.png

以上就是三种方式的具体细节。在看回到模型的整体结构图


9a7c686888c0432a7053dd0bd36759d4.png

再经过三种方式处理后得到了transformed feature, 再进行re-arranged ,就是将尺寸大小相同的放到一起concat,得到concatenated feature, 最后经过卷积层处理,再接上跟具体任务有关的Head Network部分。

 

如有错误,欢迎留言指出.


相关文章
|
6月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
60 1
|
算法 PyTorch 算法框架/工具
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
644 0
|
机器学习/深度学习 人工智能 自然语言处理
OneIE:A Joint Neural Model for Information Extraction with Global Features论文解读
大多数现有的用于信息抽取(IE)的联合神经网络模型使用局部任务特定的分类器来预测单个实例(例如,触发词,关系)的标签,而不管它们之间的交互。
175 0
|
监控
DFNet: Enhance Absolute Pose Regression withDirect Feature Matching
DFNet: Enhance Absolute Pose Regression withDirect Feature Matching
142 0
|
机器学习/深度学习 自然语言处理 算法
SS-AGA:Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment 论文解读
预测知识图(KG)中缺失的事实是至关重要的,因为现代知识图远未补全。由于劳动密集型的人类标签,当处理以各种语言表示的知识时,这种现象会恶化。
100 0
|
机器学习/深度学习 人工智能 自然语言处理
NAACL2021 AMR-IE: Abstract Meaning Representation Guided Graph Encoding and Decoding for Joint IE
富语义解析的任务,如抽象语义表示(AMR),与信息抽取(IE)具有相似的目标,即将自然语言文本转换为结构化的语义表示。为了利用这种相似性
261 0
|
机器学习/深度学习 人工智能 自然语言处理
【计算机视觉】CORA: Adapting CLIP for Open-Vocabulary Detection with Region Prompting and Anchor Pre-Matching
CORA 在目标检测任务中提出了一种新的 CLIP 预训练模型适配方法,主要包括 Region Prompting 和 Anchor Pre-Matching 两部分。 这种方法能够让 CLIP 模型适应目标检测的任务,能够识别出图像中的对象,并提供准确的分类和定位信息。
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
79 0
|
机器学习/深度学习 传感器 编解码
Spatial-Spectral Transformer for Hyperspectral Image Classification_外文翻译
 由于成像光谱学的进步,高光谱传感器倾向于以越来越高的空间和光谱分辨率捕获给定场景的反射强度[1]。获得的高光谱图像(HSI)同时包含空间特征和不同物体的连续诊断光谱[2]。因此,获得的丰富信息使HSI在许多领域有用,包括有效测量农业绩效[3]、植物病害检测[4]、矿物鉴定[5]、疾病诊断和图像引导手术[6]、生态系统测量[7],和地球监测[8]。为了充分利用获得的HSI,已经探索了许多数据处理技术,例如解混合、检测和分类[8]。
225 0
|
机器学习/深度学习 算法 图形学
Deep learning based multi-scale channel compression feature surface defect detection system
简述:首先应用背景分割和模板匹配技术来定义覆盖目标工件的ROI区域。提取的感兴趣区域被均匀地裁剪成若干个图像块,每个块被送到基于CNN的模型,以分类杂乱背景中不同大小的表面缺陷。最后,对空间上相邻且具有相同类别标签的图像块进行合并,以生成各种表面缺陷的识别图。
150 0