论文地址:https://ieeexplore.ieee.org/document/7467565
Code地址:https://github.com/mehryaragha/NoseBiometrics
三维人脸识别,是人脸识别的研究前沿。这篇论文主要用比较经典的手动特征加分类器方案,针对鼻子这类对表情不变的部位展开分析,得到了很好的表情鲁棒识别结果。在介绍这篇文章之前,我们先简单了解一下人脸识别系统的组成部分:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
1.简介
以往很多关于表情不变性三维人脸识别的研究都集中在对敏感面部表情的建模和检测上,但评估鼻腔区域解决这一问题潜力的研究相对较少,其实鼻子有许多突出特征,使它适于表情鲁棒的识别。本文进一步研究了用于身份验证和确认的三维鼻区区域,提出了一种新的算法,该算法具有很高的识别强度。
算法流程:
- 找到鼻尖的大致位置,然后进行细调,同时确定鼻根的准确位置,检测面部的对称平面(为了确定鼻尖和鼻根的位置更加准确)。
- 找到三组landmark(特征点)的位置:鼻下,眼角和鼻翼沟,用于通过应用Gabor小波的深度图其表面法线而创建的特征图。
- 使用两种类型的特征描述符:spherical patches and nasal curves。
- 使用启发式遗传算法(GA)进行特征选择。
- 将表情——鲁棒的特征描述符应用于3D Face Recognition Grand Challenge (FRGC) , Bosphorus and Binghamton University 3D Facial Expression (BU-3DFE) 数据集进行测试
3.预处理和鼻区标记
鼻尖初始位置为L40,鼻根初始位置为L10,过鼻尖点与xy平面垂直的多个平面与鼻区曲面形成多条曲线,蓝色为生成的曲线:
曲线是递减的,没有极小值,经过一定角度的旋转, 可以找到一阶微分为0的点,作为最小值点,并映射到原始曲线对应的位置。取多条曲线最小值中的极大值作为鼻根点。
很忧伤,不会打公式,还是贴图吧。。。。。。。
三个式子,(3)说明了鼻尖点和鼻根点不位于一条直线上时会产生夹角,(4)用对称点的深度差值来说明鼻尖点和鼻根点尽可能位于鼻区中间,【个人想法:其实人脸并不会真正完全对称,这个应该是理论上的值,跟实际应该有差距】,(5)在保证鼻尖点和鼻根点位于鼻区中间的同时保证两点位于一条直线上,及面部对称平面和面部的交线。
嗯,,,,,这篇的文章的关键点就在这里啦,其他的就很容易了,就不细细说来了。