干货|蚁群算法求解带时间窗的车辆路径规划问题详解(附Java代码)

简介: 干货|蚁群算法求解带时间窗的车辆路径规划问题详解(附Java代码)

学 习 警 告

一眨眼春节又过去了,相信很多同学也和小编一样,度过了一段时间相对轻松的时光。

当然,玩耍过后也不能忘记学习。本着~造福人类~的心态,小编又开始干活,为大家带来 有 · 趣 的干货算法内容了!

微信图片_20220423093734.jpg


本期为大家带来的内容是蚁群算法,解决大家熟悉的带时间窗的车辆路径规划问题。关于蚁群算法,公众号内已经有相关内容介绍TSP:

干货 | 十分钟快速搞懂什么是蚁群算法(Ant Colony Algorithm, ACA)(附代码)

本文主要分为以下部分:

蚁群算法简介

蚁群算法与VRPTW

代码测试

笔记总结



01


蚁群算法简介

蚁群系统(Ant System或Ant Colony System)一种群体仿生类算法,灵感来源于在蚂蚁觅食的过程。学者们发现,单个蚂蚁的行为比较简单,但是蚁群整体却可以体现一些智能的行为,例如可以在不同的环境下找到到达食物源的最短路径

经进一步研究发现,蚂蚁会在其经过的路径上释放一种可以称之为“信息素”(phenomenon)的物质,蚁群内的蚂蚁对信息素具有感知能力,它们会沿着信息素浓度较高路径行走,而每只路过的蚂蚁都会在路上留下信息素。这样经过一段时间后,整个蚁群就会沿着最短路径到达食物源了。

微信图片_20220423093737.png

蚁群算法通过模仿蚂蚁“每次在经过的较短路径上留下信息素”的行为,通过信息素记录下较优结果,不断逼近最优解。


02


蚁群算法与VRPTW

VRPTW在之前的推文里已经提到过多次了,这里不再详细介绍。感兴趣的朋友可以看过去的推文:

禁忌搜索算法求解带时间窗的车辆路径规划问题详解(附Java代码)

通过上面的介绍,大家不难想到,蚁群算法的关键在于信息素的利用。在蚁群寻找食物时,每次都由一只蚂蚁从头开始寻找(不同于禁忌搜索或遗传算法的邻域动作);每次寻找的不同点在于信息素的改变:不断靠近信息素较浓的路径


用蚁群算法解决VRPTW的过程主要分为以下几步:


1.初始化蚂蚁信息(以下用agents表示);

2.为每位agents构造完整路径;

3.更新信息素;

4.迭代,保存最优解。

 

算法的关键在第二步:构造解时该如何查找下一个服务的客户。

我们用以下公式计算客户j被服务的概率:




微信图片_20220423093741.jpg微信图片_20220423093744.jpg微信图片_20220423093747.jpg微信图片_20220423093749.jpg




03


代码测试

这次代码是由小编亲自编写的,由于是第一次编写ACS的VRPTW代码,有不周之处还请多包涵。


因为小编太懒了,具体代码就不在此展示了,有兴趣的朋友可以在公众号内输入【ACSVRP】不带【】即可下载对应Java代码。




这里展示一下代码的运行情况。对Solomon Benchmark C101算例的测试效果如下:


25点(迭代次数1000,算例最优解191.3):

微信图片_20220423093947.jpg

50点(迭代次数1000,算例最优解362.4):

微信图片_20220423093951.jpg

100点(迭代次数1000,算例最优解827.3):

微信图片_20220423093953.jpg

从测试数据来看,结果似乎不是很好。。。不过,VRPTW仅是一个载体,目的是为了深入了解蚁群算法的运行机制。
小编在测试时发现,参数设置地不同对结果还是有一定影响的。算法偶尔会跑出单个点构成的路径,小编认为应该加大时间窗对应参数w_2,效果有一些提升。推荐的参数已经默认设置在代码中。

同时,蚁群算法也有其他仿生类算法的特点,比较容易早熟。这点在测试100点数据是尤为明显,全局最优解可能与前100次迭代的最优解相同。




04


笔记总结

大致了解了蚁群算法对VRPTW的求解过程后,我的第一感觉是,和禁忌搜索的思路其实很像:两者都是利用过去搜索的“记忆”指导下一步走向。禁忌禁止一些方向,信息素引导一些方向。但两者又有很大区别:禁忌搜索作为邻域搜索类算法,每次都在旧解里变换出新解;蚁群算法却需要重新派出蚂蚁走完全程。对比之下,每次迭代时蚁群算法可能需要跟更多花费时间。从测试结果来看,蚁群算法确实没有禁忌搜索高效。当然,这可能和小编个人编写代码的能力有关。


但不可否认的是,大自然的智慧确实不同寻常,在每一个领域都闪耀着光辉,如此美妙绝伦。


微信图片_20220423093956.jpg

(小小的蚂蚁,也蕴藏着让人意想不到的智慧呢!)


相关文章
|
10天前
|
Java
在 Java 中捕获和处理自定义异常的代码示例
本文提供了一个 Java 代码示例,展示了如何捕获和处理自定义异常。通过创建自定义异常类并使用 try-catch 语句,可以更灵活地处理程序中的错误情况。
|
12天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
20天前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
55 3
|
21天前
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
20天前
|
Java
Java代码解释++i和i++的五个主要区别
本文介绍了前缀递增(++i)和后缀递增(i++)的区别。两者在独立语句中无差异,但在赋值表达式中,i++ 返回原值,++i 返回新值;在复杂表达式中计算顺序不同;在循环中虽结果相同但使用方式有别。最后通过 `Counter` 类模拟了两者的内部实现原理。
Java代码解释++i和i++的五个主要区别
|
23天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
25 3
|
22天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
30天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
15天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。