【算法学习】最短路径问题(二)

简介: 【算法学习】最短路径问题

03

Floyd算法

 

Floyd它可以方便地求出任意两点间的距离,求的是多源最短路径。最大的优点就是容易理解和编写,算法的核心代码只有5行:


   //核心代码
     for(k=1;k<=n;k++)
         for(i=1;i<=n;i++)
             for(j=1;j<=n;j++)
                if(dist[i][k]+dist[k][j]<dist[i][j])
                     dist[i][j]=dist[i][k]+dist[k][j]; 


但看了代码后童鞋们会发现,Floyd算法的时间复杂度比较高(n^3),不适合计算大量数据。

 

我们可以把Floyd算法理解为“如果两点间的路径长度,大于这两点通通过第三点连接的路径长度,那么就修正这两点的最短路径”。

 

下面我们来具体讲解一下算法的思路:

在代码中,i,j表示的是我们当前循环中所求的起点、终点。k则是我们引入的“中转点”。为什么要引入中转点呢?因为当我们寻找i、j之间的最短路径时,要么是i、j间的距离,要么就是经过其他点中转:ik。。。j

 

为了方便讲解,我们给出一个概念“松弛”:如果dist【i】【j】>dist【i】【k】+dist【k】【j】(e表示两点间的距离),我们把dist【i】【j】更新为dist【i】【k】+dist【k】【j】,达到“经过中转点k后距离缩短,并记录”的目的。

 

在第1轮循环中,我们以1为中转点,把任意两条边的距离松弛一遍,更新数组数据。

在第2轮循环中,我们以2为中转点,再松弛一遍。这时,对第1轮松弛更新过的数据,如果继续更新,相当于中转到1,2后取得当前最短路径。

。。。。。。

最后得到的数组就是任意两点间的最短路径。

 

这个时候再看一遍这句话:“如果两点间的路径长度,大于这两点通通过第三点连接的路长度,那么就修正这两点的最短路径。”是不是就能够理解了?

 

下面放码。

 

//Floyd算法解最短路径问题 
#include <iostream>
using namespace std;
const int INF=99999;
int main()
{
  //读入数据的过程和dfs没什么区别,就不讲解了 
    int i,j,n,m,k,a,b,c;
    int dist[105][105];
    cin>>n>>m;
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
            if(i==j)    dist[i][j]=0;  
                else    dist[i][j]=INF;  
            for(i=1;i<=m;i++)
            {
                cin>>a>>b>>c;
                dist[a][b]=c;
            }
     //核心代码
     for(k=1;k<=n;k++)
         for(i=1;i<=n;i++)
             for(j=1;j<=n;j++)
                if(dist[i][k]+dist[k][j]<dist[i][j])
                     dist[i][j]=dist[i][k]+dist[k][j]; 
     for (i=1;i<=n;i++){
       for(j=1;j<=n;j++){
         cout<<dist[i][j]<<"\t";
     }
     cout<<endl;
   }
        return 0;
}

微信图片_20220422143846.png

 


04

Dijkstra算法


Dijkstra 算法主要解决的是单源最短路径问题。它的时间复杂度一般是o(n^2) ,因此相对于Floyd算法速度上有极大的优势,可以处理更多的数据。

 

算法的核心依旧是上文讲到的“松弛”。只不过松弛的方式略有不同:它通过不断选择距离起点最近的顶点作为新的起点,再利用这些新的起点来松弛其他较远的点,最终计算出所有点到起点最短路径。

这样听起来有点绕,我们基于代码,通过例子来讲解。

 

我们把点i到起点1的距离定义为dis【i】(现在知道我上面为什么用dist了吧!),用一个book来标记该点是否已经为最短状况,初始化为0(否)

 

核心代码分为两部分:第一部分判断最小,第二部分进行松弛。


以原题为例:

第一次循环,我们先进入第一部分判断较短距离。第一次到起点1只有2号,5号点有最短距离,分别为2,10。

下一步,我们找到2,5号中到起点1距离较短的点u(这里是2号)。

进入第二部分松弛。对点v,如果v到起点1的距离大于u(即2)到1的距离加上2到v的距离,更新v到原点的距离dis【v】。

开始循环。

在下一次循环中,相当于把点2当作新的起点代替点1,进行上述操作。

 

可以看出,Dijkstra是一种基于贪心策略的算法,也是一种以DFS为思路的算法。


#贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,贪心算法所做出的是在某种意义上的局部最优解。#

 

为什么下一条次较短路径要这样选择?(贪心准则的正确性)

因为我们算的是到起点的距离,所以所有路径必然要经过与起点最近的2(或不经过任何别的中转点),而相对于2点,5号点距离更远,还有通过2点松弛之后缩短路径的可能性,所以我们直接选择2为新的起点进行下一步松弛。那么,第k次循环就表示松弛了k次,即经过k-1个中转点(或k-1条边)才到达起点1,留在dis()数组中的距离就是经过中转点个数<=k-1(可能无需经过这么多个点就达到)的最短路径。

 

Dijkstra算法主要特点是以起始点为中心向外层层扩展,从一个顶点到其余各顶点的最短路径算法,直到扩展到最远点(指经过的中转点最多,)为止。(这里就是类似BFS的地方)

 

选择最短路径顶点的时候依照的是实现定义好的贪心准则,所以该算法也是贪心算法的一种。

还有说法是Dijkstra也属于动态规划。这里我就不发表言论了,因为本小白还不懂(┬_┬)。


下面给出代码。

//Dijkstra算法解最短路径问题 
#include<iostream>
using namespace std;
const int INF=99999;
int main()
{
     int dist[105][105] ;
   int dis[105]  ;
   int book[105] ;
   int i,j,n,m,a,b,c,u,v,Min;
     cin>>n>>m;
     //开始了!!!
     for(i = 1;i <= n;i++)  //每轮循环计算的是中转点为n-1时的最小点。
          for(j = 1;j <= n;j++)
              if(i == j)  dist[i][j] = 0;
              else        dist[i][j] = INF;
              for(i = 1;i <= m;i++)
              {
                    cin>>a>>b>>c;
                    dist[a][b] = c;
              }
          for(i = 1;i <= n;i++)        
                    dis[i] = dist[1][i];
          for(i = 1;i<=n;i++)   //初始化标记book 
                   book[i] = 0;
                   book[1] = 1;
          for(i = 1;i <= n-1;i++)  //筛出当前没有访问的并且与上一点直接相连的距离最小的点。
        {
               Min = INF;
               for(j = 1;j <= n;j++)
               {
                     if(book[j] == 0&& dis[j] < Min)
                     {
                           Min = dis[j];
                           u = j;
                     }
               }
          book[u] = 1;
          for(v = 1;v <= n;v++) //松弛
          {
                if(dist[u][v] < INF)
                {
                      if(dis[v] > dis[u] + dist[u][v])
                           dis[v] = dis[u] + dist[u][v];
                }
          }
        }
        for(i  = 1;i <= n;i++)
            cout<<dis[i]<<"\t";
    return 0;
}

微信图片_20220422143849.png

 

相关文章
|
19天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
19天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
19天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之顺序表【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找等具体详解步骤以及举例说明
|
19天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
19天前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
19天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
19天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找习题精讲等具体详解步骤以及举例说明
|
19天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构的基本概念;算法的基本概念、特性以及时间复杂度、空间复杂度等举例说明;【含常见的报错问题及其对应的解决方法】
|
19天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!