【C++初阶学习】C++模板初阶

简介: 【C++初阶学习】C++模板初阶

零、前言


本章主要讲解C++的模板相关的初阶知识


一、泛型编程


  • 用函数重载来实现交换变量函数:


void Swap(int& left, int& right)
{
  int temp = left;
  left = right;
  right = temp;
}
void Swap(double& left, double& right)
{
  double temp = left;
  left = right;
  right = temp;
}
void Swap(char& left, char& right)
{
  char temp = left;
  left = right;
  right = temp;
}


使用函数重载的弊端:

重载的函数仅仅只是类型不同,代码的复用率比较低,只要有新类型出现时,就需要增加对应的函数

代码的可维护性比较低,一个出错可能所有的重载均出错

引入:

C++为了解决这样的问题,采用模板让编译器根据不同的类型利用该模子来生成相对应参数需要的函数代码,而这也就是泛型编程,对于广泛的类型参数都适用


概念:

编写与类型无关的通用代码,是代码复用的一种手段,模板是泛型编程的基础


示图:模板分类


image.png


二、函数模板


1、函数模板定义及使用


  • 概念:


函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本


  • 语法:


template<typename T1, typename T2,......,typename Tn>
返回值类型 函数名(参数列表){}  


  • 示例:


template<typename T>
void Swap(T& left, T& right)
{
  T temp = left;
  left = right;
  right = temp;
}
template<class T1,class T2>//class等同于typename
T1 Add(T1& num1, T2& num2)
{
  return num1 + num2;
}


  • 效果示图:


image.png


注:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)


2、函数模板原理


函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具,所以其实模板就是将本来应该我们做的重复的事情交给了编译器(本质是重复的工作交给了机器去完成)



image.png


说明:

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用


比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此


3、函数模板实例化


  • 概念:


用不同类型的参数使用函数模板时,称为函数模板的实例化


  • 实例化分类:


  1. 隐式实例化:让编译器根据实参推演模板参数的实际类型


  • 示例:


template<class T>
T Add(const T& left, const T& right)
{
  return left + right;
}
int main()
{
  int a1 = 10, a2 = 20;
  double d1 = 10.0, d2 = 20.0;
  Add(a1, a2);
  Add(d1, d2);
  //Add(a1, d1);err 该语句不能通过编译
  /*
  因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
  通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
  编译器无法确定此处到底该将T确定为int 或者 double类型而报错
  注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
  */
  // 此时有两种处理方式:
  //1. 用户自己来强制转化 
  Add(a1, (int)d1);
  //2. 使用显式实例化
  Add<double>(a1, d1);
  return 0;
}


  1. 显式实例化:在函数名后的<>中指定模板参数的实际类型


  • 示例:


//在上述模板基础上
int main()
{
  int a = 10;
  double b = 20.0;
  // 显式实例化
  Add<int>(a, b);
    Add<double>(a, b);
  return 0;
}


注:如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错


4、函数模板匹配原则


  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数



  • 示例:


// 专门处理int的加法函数
int Add(int left, int right)
{
  return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
  return left + right;
}
void Test()
{
  Add(1, 2); // 与非模板函数匹配,编译器不需要特化
  Add<int>(1, 2); // 调用编译器特化的Add版本
}


  1. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板


  • 示例:


// 专门处理int的加法函数
int Add(int left, int right)
{
  return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
  return left + right;
}
void Test()
{
  Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
  Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函
}


  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换


三、类模板


1、类模板定义及使用



  • 语法:



template<class T1, class T2, ..., class Tn>
class 类模板名
{
  // 类内成员定义
};


  • 示例:


// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
  Vector(size_t capacity = 10)
    : _pData(new T[capacity])
    , _size(0)
    , _capacity(capacity)
  {}
  // 使用析构函数演示:在类中声明,在类外定义。
  ~Vector();
  void PushBack(const T& data);
  void PopBack();
    // ...
  size_t Size() 
  { 
    return _size; 
  }
  T& operator[](size_t pos)
  {
    assert(pos < _size);
    return _pData[pos];
  }
private:
  T* _pData;
  size_t _size;
  size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
  if (_pData)
  delete[] _pData;
  _size = _capacity = 0;
}


2、类模板实例化


类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类


  • 示例:


// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;
相关文章
|
1月前
|
存储 算法 C++
C++ STL 初探:打开标准模板库的大门
C++ STL 初探:打开标准模板库的大门
95 10
|
3月前
|
编译器 C++
【C++】——初识模板
【C++】——初识模板
【C++】——初识模板
|
3月前
|
算法 C语言 C++
C++语言学习指南:从新手到高手,一文带你领略系统编程的巅峰技艺!
【8月更文挑战第22天】C++由Bjarne Stroustrup于1985年创立,凭借卓越性能与灵活性,在系统编程、游戏开发等领域占据重要地位。它继承了C语言的高效性,并引入面向对象编程,使代码更模块化易管理。C++支持基本语法如变量声明与控制结构;通过`iostream`库实现输入输出;利用类与对象实现面向对象编程;提供模板增强代码复用性;具备异常处理机制确保程序健壮性;C++11引入现代化特性简化编程;标准模板库(STL)支持高效编程;多线程支持利用多核优势。虽然学习曲线陡峭,但掌握后可开启高性能编程大门。随着新标准如C++20的发展,C++持续演进,提供更多开发可能性。
80 0
|
24天前
|
编译器 C语言 C++
配置C++的学习环境
【10月更文挑战第18天】如果想要学习C++语言,那就需要配置必要的环境和相关的软件,才可以帮助自己更好的掌握语法知识。 一、本地环境设置 如果您想要设置 C++ 语言环境,您需要确保电脑上有以下两款可用的软件,文本编辑器和 C++ 编译器。 二、文本编辑器 通过编辑器创建的文件通常称为源文件,源文件包含程序源代码。 C++ 程序的源文件通常使用扩展名 .cpp、.cp 或 .c。 在开始编程之前,请确保您有一个文本编辑器,且有足够的经验来编写一个计算机程序,然后把它保存在一个文件中,编译并执行它。 Visual Studio Code:虽然它是一个通用的文本编辑器,但它有很多插
|
1月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
16 1
|
1月前
|
Java 编译器 C++
c++学习,和友元函数
本文讨论了C++中的友元函数、继承规则、运算符重载以及内存管理的重要性,并提到了指针在C++中的强大功能和使用时需要注意的问题。
21 1
|
1月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
41 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
1月前
|
算法 编译器 C++
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
79 2
|
1月前
|
存储 编译器 C++
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
38 2
|
1月前
|
存储 算法 编译器
【C++】初识C++模板与STL
【C++】初识C++模板与STL