Docker环境下Spring Boot应用内存飙升分析与解决

简介: Docker环境下Spring Boot应用内存飙升分析与解决

目录

Spring Boot应用内存飙升

服务现状

JVM默认内存设置

优化

限制JVM内存

参数解释

JVM常见参数

java.security.egd 作用

优化后的Dockerfile文件

优化后的效果

JVM参数设置是否生效

基础镜像优化

OpenJ9

GraalVM

Fabric8  

优化后的Dockerfile文件

优化后的效果

备注

Xmx < limit

支持springboot多环境和jvm动态配置的Dockerfile

参考



Spring Boot应用内存飙升

一个简单的Spring Boot应用, 几乎只有一个用户在用,内存竟然达到1.2G, 可怕


服务现状

由于之前服务比较少,服务器资源充足,许多服务启动时都未添加JVM参数(遗留问题)。结果就是每个服务启动都占用了1.2G-2G的内存,有些服务的体量根本用不了这么多。那么,在Spring Boot中如果未设置JVM内存参数时,JVM内存是如何配置的呢?


JVM默认内存设置

当运行一个Spring Boot项目时,如果未设置JVM内存参数,Spring Boot默认会采用JVM自身默认的配置策略。在资源比较充足的情况下,开发者倒是不太用关心内存的设置。但一旦涉及到资源不足,JVM优化,那么就需要了解默认的JVM内存配置策略。

关于JVM内存最常见的设置为初始堆大小(-Xms)和最大堆内存(-Xmx)。很多人懒得去设置,而是采用JVM的默认值。特别是在开发环境下,如果启动的微服务比较多,内存会被撑爆。

而JVM默认内存配置策略分两种场景,大内存空间场景和小内存空间场景(小于192M)。

以4GB内存为例,初始堆内存大小和最大堆内存大小如下图:

默认情况下,最大堆内存占用物理内存的1/4,如果应用程序超过该上限,则会抛出OutOfMemoryError异常。初始堆内存大小为物理内存的1/64

如果应用程序运行在手机上或物理内存小于192M时,JVM默认的初始堆内存大小和最大堆内存大小如下图:

最大堆内存为物理内存的1/2,初始堆内存大小为物理内存的1/64,但当初始堆内存最小为8MB,则为8MB。

默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制。

因此,服务器一般设置-Xms、-Xmx相等以避免在每次GC后调整堆的大小。对象的堆内存由称为垃圾回收器的自动内存管理系统回收。

其中最大堆内存是JVM使用内存的上限,实际运行过程中使用多少便是多少。默认,分配给年轻代的最大空间量是堆总大小的三分之一。

针对最开始的问题,如果每个程序都按照默认配置启动,一台服务器上部署多个应用时,就会出现内存吃紧的情况,造成一定的浪费。最简单的操作就是在执行java -jar启动时添加上对应的jvm内存设置参数。

java -Xms64m -Xmx128m -jar xxx.jar

项目使用的是Docker部署, 我们先来查看 原来的Dockerfile文件

确实没有设置-Xms、-Xmx

#设置镜像基础,jdk8
FROM java:8
#维护人员信息
MAINTAINER FLY
#设置镜像对外暴露端口
EXPOSE 8061
#将当前 target 目录下的 jar 放置在根目录下,命名为 app.jar,推荐使用绝对路径。
ADD target/certif-system-2.1.0.jar /certif-system-2.1.0.jar
# 时区设置
RUN echo "Asia/shanghai" > /etc/timezone
#执行启动命令
ENTRYPOINT ["java", "-jar","/certif-system-2.1.0.jar"]


优化

限制JVM内存

#设置变量 JAVA_OPTS
ENV JAVA_OPTS=""#这样写会以shell方式执行,会替换变量
ENTRYPOINT java ${JAVA_OPTS}-Djava.security.egd=file:/dev/./urandom -jar /app.jar
#下面这样写法不行,他只是拼接不会识别变量
#ENTRYPOINT ["java","${JAVA_OPTS}","-Djava.security.egd=file:/dev/./urandom","-jar","app.jar"]

Spring Boot会将任何环境变量传递给应用程序 - 但是我们的JAVA_OPTS并非是针对应用程序的,而是针对Java runtime本身的。 所以我们需要使用$ JAVA_OPTS变量来 exec java。 这需要对Dockerfile进行一些小改动:

ENTRYPOINT exec java $JAVA_OPTS -jar app.jar


运行docker run命令

意思是运行时通过-e重置覆盖环境变量中JAVA_OPTS参数信息。

docker run  -e  JAVA_OPTS='-Xmx1344M -Xms1344M -Xmn448M -XX:MaxMetaspaceSize=192M -XX:MetaspaceSize=192M'


参数解释

JVM常见参数

可通过JAVA_OPTS设置

参数说明:
-server:一定要作为第一个参数,在多个CPU时性能佳
-Xms:初始Heap大小,使用的最小内存,cpu性能高时此值应设的大一些
-Xmx:java heap最大值,使用的最大内存
-XX:PermSize:设定内存的永久保存区域
-XX:MaxPermSize:设定最大内存的永久保存区域
-XX:MaxNewSize:
+XX:AggressiveHeap 会使得 Xms没有意义。这个参数让jvm忽略Xmx参数,疯狂地吃完一个G物理内存,再吃尽一个G的swap。
-Xss:每个线程的Stack大小
-verbose:gc 现实垃圾收集信息
-Xloggc:gc.log 指定垃圾收集日志文件
-Xmn:young generation的heap大小,一般设置为Xmx的3、4分之一
-XX:+UseParNewGC :缩短minor收集的时间
-XX:+UseConcMarkSweepGC :缩短major收集的时间
提示:此选项在Heap Size 比较大而且Major收集时间较长的情况下使用更合适。


java.security.egd 作用

SecureRandom在java各种组件中使用广泛,可以可靠的产生随机数。但在大量产生随机数的场景下,性能会较低。这时可以使用"-Djava.security.egd=file:/dev/./urandom"加快随机数产生过程。

建议在大量使用随机数的时候,将随机数发生器指定为/dev/./urandom

bug产生的原因请注意下面第四行源码,如果java.security.egd参数指定的是file:/dev/random或者file:/dev/urandom,则调用了无参的NativeSeedGenerator构造函数,而无参的构造函数将默认使用file:/dev/random 。openjdk的代码和hotspot的代码已经不同,openjdk在后续产生随机数的时候没有使用这个变量。

abstract class SeedGenerator {
......
    static {
        String egdSource = SunEntries.getSeedSource();
        if (egdSource.equals(URL_DEV_RANDOM) || egdSource.equals(URL_DEV_URANDOM)) {
            try {
                instance = new NativeSeedGenerator();
                if (debug != null) {
                    debug.println("Using operating system seed generator");
                }
            } catch (IOException e) {
                if (debug != null) {
                    debug.println("Failed to use operating system seed "
                                  + "generator: " + e.toString());
                }
            }
        } else if (egdSource.length() != 0) {
            try {
                instance = new URLSeedGenerator(egdSource);
                if (debug != null) {
                    debug.println("Using URL seed generator reading from "
                                  + egdSource);
                }
            } catch (IOException e) {
                if (debug != null)
                    debug.println("Failed to create seed generator with "
                                  + egdSource + ": " + e.toString());
            }
        }
......
    }


优化后的Dockerfile文件

#设置基础镜像jdk8
FROM java:8
#维护人员信息
MAINTAINER FLY
#设置镜像对外暴露端口
EXPOSE 8061
#将当前 target 目录下的 jar 放置在根目录下,命名为 app.jar,推荐使用绝对路径。
ADD target/certif-system-2.1.0.jar /certif-system-2.1.0.jar
# 设置环境变量
ENV JAVA_OPTS="-server -Xms512m -Xmx512m"
# 时区设置
RUN echo "Asia/shanghai" > /etc/timezone
#执行启动命令
#ENTRYPOINT ["java", "-jar","/certif-system-2.1.0.jar"]
ENTRYPOINT exec java ${JAVA_OPTS} -Djava.security.egd=file:/dev/./urandom -jar /certif-system-2.1.0.jar


优化后的效果


JVM参数设置是否生效

通过 docker exec -it 5a8ff3925974 ps -ef | grep java 查看

CONTAINER ID   NAME             CPU %     MEM USAGE / LIMIT   MEM %     NET I/O           BLOCK I/O         PIDS
5a8ff3925974   certif-system    0.74%     493.3MiB / 800MiB   61.66%    272kB / 304kB     7.54MB / 0B       97
[root@localhost certif]# docker exec -it 5a8ff3925974 ps -ef | grep java
root           1       0  5 12:13 ?        00:01:02 java -server -Xms512m -Xmx51


基础镜像优化

减少Spring Boot减少JVM占用的三种Dockerfile镜像配置:


OpenJ9

OpenJ9:取代Hotspot的IBM Eclipse项目。它已经被开发很长一段时间,看起来已经足够成熟,可以用于生产。您可以立即轻松地获益,替换一些基本镜像和一些参数可能足以为您的应用程序提供巨大的推动力 - 我已经通过更改 Dockerfile基本映像替换了一些应用程序,节约了大约 1/3的内存占用,增强了吞吐量。

FROM adoptopenjdk/openjdk8-openj9:alpine-slim
COPY target/app.jar /my-app/app.jar
ENTRYPOINT java $JAVA_OPTS -Xshareclasses -Xquickstart -jar /my-app/app.jar


GraalVM

GraalVM:围绕这个由Oracle实验室开发的有前途的虚拟机进行了大量宣传。它为您提供了将应用程序编译为本机镜像的选项,生成镜像非常非常快且内存消耗很少,吸引人眼球的另一个功能是能够与多种语言(如Javascript,Ruby,Python和Java)进行交互操作。

FROM oracle/graalvm-ce:1.0.0-rc15
COPY target/app.jar /my-app/app.jar
ENTRYPOINT java $JAVA_OPTS -jar /my-app/app.jar


Fabric8  

Fabric8 shell:一个bash脚本,可根据应用程序当前运行环境自动为您配置JVM参数。它可以在这里下载,是这个研究项目的产物。它降低了不少内存:

FROM java:openjdk-8-alpine
COPY target/app.jar /my-app/app.jar
COPY run-java.sh /my-app/run-java.sh
ENTRYPOINT JAVA_OPTIONS=${JAVA_OPTS} JAVA_APP_JAR=/my-app/app.jar /my-app/run-java.sh

虽然我们在应用解决方案时总是需要考虑上下文,但对我来说,获胜者是OpenJ9,从而以最少的配置实现了生产就绪的性能和内存占用。

虽然仍然没有找到使用不合适的情况,但这并不意味着它将成为一个银弹解决方案,请记住,最好是测试替代品,看看哪种更适合您的需求。


优化后的Dockerfile文件

#设置镜像基础,jdk8
FROM adoptopenjdk/openjdk8-openj9:alpine-slim
#维护人员信息
MAINTAINER FLY
#设置镜像对外暴露端口
EXPOSE 8061
#将当前 target 目录下的 jar 放置在根目录下,命名为 app.jar,推荐使用绝对路径。
ADD target/certif-system-2.1.0.jar /certif-system-2.1.0.jar
# 设置环境变量
ENV JAVA_OPTS="-server -Xms512m -Xmx512m"
# 时区设置
RUN echo "Asia/shanghai" > /etc/timezone
#执行启动命令
#ENTRYPOINT ["java", "-jar","/certif-system-2.1.0.jar"]
#ENTRYPOINT exec java ${JAVA_OPTS} -Djava.security.egd=file:/dev/./urandom -jar /certif-system-2.1.0.jar
#ENTRYPOINT java $JAVA_OPTS -Xshareclasses -Xquickstart -jar /certif-system-2.1.0.jar
ENTRYPOINT java $JAVA_OPTS -Xshareclasses -Xquickstart -jar /certif-system-2.1.0.jar


优化后的效果

 


备注

Xmx < limit

docker镜像的内存上限,不能全部给“-Xmx”。因为JVM消耗的内存不仅仅是Heap,如下图:

JVM基础结构如下:栈、堆。

JVM中的栈主要是指线程里面的栈,里面有方法栈、native方法栈、PC寄存器等等;每个方法栈是由栈帧组成的;每个栈帧是由局部变量表、操作数栈等组成。

每个栈帧其实就代表一个方法

java中所有对象都在堆中分配;堆中对象又分为年轻代、老年代等等,不同代的对象使用不同垃圾回收算法。

-XMs:启动虚拟机预留的内存 -Xmx:最大的堆内存

因此

JVM = Heap + Method Area + Constant Pool + Thread Stack * num of thread

所以Xmx的值要小于镜像上限内存。


支持springboot多环境和jvm动态配置的Dockerfile

假设springboot项目 myboot-api , 在其根目录下创建文件Dockerfile

内容如下:

FROM java:8
MAINTAINER xxx
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
RUN echo 'Asia/Shanghai' >/etc/timezone
ENV LANG=zh_CN.UTF-8 \
  JAVA_OPTS="-server -Xms512m -Xmx512m" \
    SPRING_PROFILES_ACTIVE="dev"
#ARG JAR_FILE
#ADD ${JAR_FILE} app.jar
ADD target/myboot-api.jar app.jar
ENTRYPOINT exec java ${JAVA_OPTS} -Djava.security.egd=file:/dev/./urandom -jar -Dspring.profiles.active=${SPRING_PROFILES_ACTIVE} /app.jar

其中ENV 环境变量

  • JAVA_OPTS JVM堆内存起始最大值配置
  • SPRING_PROFILES_ACTIVE application.yml环境

Linux 命令行创建镜像 启动容器

echo "===============动态参数配置 begin===============>"
APPLICATION_NAME=xxx-srm-api
echo "image and container name is $APPLICATION_NAME"
# springboot启动的端口号
BootPort=8082
echo "the spring boot ($APPLICATION_NAME) port is $BootPort"
# docker中的springboot启动的端口号
DockerBootPort=8082
echo "===============动态参数配置 end===============>"
echo "build docker image"
# mvn dockerfile:build
docker build -f Dockerfile -t $APPLICATION_NAME:latest .
echo "current docker images:"
docker images | grep $APPLICATION_NAME
echo "start container ===============> "
docker run -d -p $BootPort:$DockerBootPort -e JAVA_OPTS="-server -Xms512m -Xmx512m" -e SPRING_PROFILES_ACTIVE="test"  --name $APPLICATION_NAME $APPLICATION_NAME:latest


参考

https://medium.com/@cl4r1ty/docker-spring-boot-and-java-opts-ba381c818fa2



目录
相关文章
|
24天前
|
Web App开发 监控 JavaScript
监控和分析 JavaScript 内存使用情况
【10月更文挑战第30天】通过使用上述的浏览器开发者工具、性能分析工具和内存泄漏检测工具,可以有效地监控和分析JavaScript内存使用情况,及时发现和解决内存泄漏、过度内存消耗等问题,从而提高JavaScript应用程序的性能和稳定性。在实际开发中,可以根据具体的需求和场景选择合适的工具和方法来进行内存监控和分析。
|
3天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
17 1
|
19天前
|
开发框架 监控 .NET
【Azure App Service】部署在App Service上的.NET应用内存消耗不能超过2GB的情况分析
x64 dotnet runtime is not installed on the app service by default. Since we had the app service running in x64, it was proxying the request to a 32 bit dotnet process which was throwing an OutOfMemoryException with requests >100MB. It worked on the IaaS servers because we had the x64 runtime install
|
29天前
|
Web App开发 JavaScript 前端开发
使用 Chrome 浏览器的内存分析工具来检测 JavaScript 中的内存泄漏
【10月更文挑战第25天】利用 Chrome 浏览器的内存分析工具,可以较为准确地检测 JavaScript 中的内存泄漏问题,并帮助我们找出潜在的泄漏点,以便采取相应的解决措施。
158 9
|
26天前
|
关系型数据库 MySQL Docker
docker环境下mysql镜像启动后权限更改问题的解决
在Docker环境下运行MySQL容器时,权限问题是一个常见的困扰。通过正确设置目录和文件的权限,可以确保MySQL容器顺利启动并正常运行。本文提供了多种解决方案,包括在主机上设置正确的权限、使用Dockerfile和Docker Compose进行配置、在容器启动后手动更改权限以及使用 `init`脚本自动更改权限。根据实际情况选择合适的方法,可以有效解决MySQL容器启动后的权限问题。希望本文对您在Docker环境下运行MySQL容器有所帮助。
65 1
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
4月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
392 0
|
2月前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
64 1
|
2月前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
2月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。