LabVIEW性能和内存管理 7 LabVIEW中局部和全局变量的内存分配

简介: LabVIEW性能和内存管理 7 LabVIEW中局部和全局变量的内存分配

LabVIEW性能和内存管理 7 LabVIEW中局部和全局变量的内存分配


本文介绍LabVIEW性能和内存管理的几个建议7。


LabVIEW Cleanup


–    LabVIEW cleans upmany references when the owning VI goes idle and others when the process closes


–    Manually closereferences to avoid undesirable memory growth, particularly for long-runningapplications.


当打开引用的层次结构顶层VI(拥有的VI)空闲时,或者当LabVIEW退出时,LabVIEW会自动关闭引用。当拥有的VI处于空闲状态时关闭的一些引用类型是文件引用、队列和ActiveX引用。其他引用,如VISA和IVI,直到LabVIEW退出才会关闭。


作为程序员,在执行期间关闭引用仍然是一个好主意,原因有几个。如果有一个长时间运行的程序,重复打开引用而不关闭它们可能会导致内存问题,因为每个引用都需要内存。此外,任何与外部代码相关的引用都应该手动关闭,以确保关闭进程以特定的顺序执行,以避免崩溃和其他可能的损坏。在大多数其他开发环境中,关闭引用失败通常会在关闭应用程序时导致崩溃或内存泄漏。


Memory Usage ofthe User Interface


–    Every control onthe UI requires memory in order to store the data structure


–    At run time,Control and Indicator data is additional copy of block diagram data


–    Default data forcontrols may contribute to unnecessary memory usage


–    SubVI UIsgenerally do not contribute to memory usage


在LabVIEW中最容易被忽视的内存使用区域之一是前面板。当加载前面板时,LabVIEW必须分配足够的内存来存储所有的数据结构和默认数据。每个控件都包含框图上数据的单独副本,因此内存密集型应用程序应避免显示大量数据,除非需要,否则应避免耗尽内存。


如果有一个非常大的前面板和非常大的控件,例如一个包含30000个元素的数组,那么前面板需要更多的内存来加载。较大的默认数据可能导致内存使用量增加和加载时间变慢。使用VI Analyzer工具包中的Array Default Values测试来识别默认数据不必要地增加内存使用的情况。避免为顶级VI创建一个单一的、单片的前面板。结合一些特性,如子面板控件和动态加载的VIs,如果使用得当,可以减少应用程序的内存使用量。


SubVI通常不会将它们的前面板加载到内存中,除非需要或手动加载,所以SubVI的前面板的内存使用通常不会影响应用程序的内存使用。


SubVIs and MemoryUsage


The executionsystem makes a copy of the control and indicator data of the subVI under thefollowing conditions:


•   The front panelis in memory


•   The front paneluses data printing


•   The block diagramuses Property Nodes that reference front panel controls/indicators


•   The VI uses localvariables


•   The front paneluses data logging


如果调用SubVI,则只将其编译后的代码加载到内存中,除非需要执行前面板。由于各种原因,前面板可能在内存中。其中几个项目需要内存中的前面板才能正常工作。也有可能SubVI配置为在调用时打开前面板。


在“操作”菜单中,可以启用“完成时打印”和“完成时记录”


Tips for reducingmemory usage


•   Operate on datain place


•   Do not overusereentrant settings


•   Close referencesto avoid leaks


•   Avoid operationswhich require the front panel to be in memory


–    Ex: Controlreferences


–    Save the VI andclose the front panel before running


•   Avoid largedefault data in arrays, graphs, etc.


•   Only displayinformation on the front panel when necessary


•   RequestDeallocation Primitive


LabVIEW中局部和全局变量的内存分配


正在编写一个LabVIEW应用程序,需要知道何时分配和解除分配全局变量以进行内存管理。有没有办法以编程方式释放此内存?


解答


局部变量


局部变量的分配发生在调用VI加载到内存中时。如果是独立VI,则局部变量的内存在运行时分配,并在运行结束时释放。如果局部变量在主VI中静态加载的子VI中声明,则局部变量的内存在主VI加载到内存中时分配,并在主VI卸载后不久由LabVIEW内存管理器解除分配。如果子VI是动态加载的,如下图所示,则局部变量的内存在子VI的调用时分配,并在卸载子VI后不久由LabVIEW内存管理器解除分配。

全局变量

全局变量存在于特殊的全局VI中,与应用程序流程分开。当被另一个VI访问时,它们会将变量的副本带入内存。当调用VI从内存中卸载时,此副本将被销毁。请注意,复制大型数组或其他大型变量可能既密集又耗时。


释放内存


LabVIEW无法以编程方式解分配为全局和局部变量预留的内存,但您可以在顶级VI完成之前解除为运行子VI而留出的内存。在子VI完成其操作后实施请求释放VI,以清除子VI的内存。


需要说明的是,上述的例程和文档,都是可以下载的,双击即可打开,其中压缩文件是可以采用粘贴复制的方式,拷贝到硬盘上。这不是图片,各位小伙伴看到后尝试一下,这个问题就不用加微信咨询了。有关LabVIEW编程、LabVIEW开发等相关项目,可联系们。

相关文章
|
4天前
|
存储 缓存 算法
深入理解操作系统内存管理:从虚拟内存到物理内存
【5月更文挑战第30天】操作系统的心脏——内存管理,在系统性能和稳定性中扮演着关键角色。本文将深入探讨操作系统中的内存管理机制,特别是虚拟内存与物理内存之间的映射关系、分页机制以及内存分配策略。通过分析现代操作系统如何处理内存资源,我们可以更好地理解计算机系统的内部工作原理,并掌握提升系统性能的关键因素。
|
10天前
|
算法 内存技术
深入理解操作系统内存管理:从虚拟内存到物理内存的旅程
【5月更文挑战第24天】 在现代计算机系统中,操作系统的内存管理是确保系统高效稳定运行的关键组成部分。本文将探讨操作系统是如何通过虚拟内存到物理内存的映射机制,实现对内存资源的高效管理和保护。我们将剖析分页和分段两种主要的内存管理技术,并讨论它们如何协同工作以提供内存抽象、重定位、共享和保护。文章还将涉及虚拟内存的技术细节,包括页面置换算法和内存分配策略,以及它们对系统性能的影响。
|
10天前
|
存储 缓存 程序员
C++内存管理:避免内存泄漏与性能优化的策略
C++内存管理涉及程序稳定性、可靠性和性能。理解堆和栈的区别至关重要,其中堆内存需手动分配和释放。避免内存泄漏的策略包括及时释放内存、使用智能指针和避免野指针。性能优化策略则包括减少内存分配、选用合适数据结构、避免深拷贝及缓存常用数据。通过这些最佳实践,可提升C++程序的效率和质量。
|
13天前
|
程序员 编译器 C语言
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free(下)
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free
23 0
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free(下)
|
13天前
|
C语言 C++
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free(中)
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free
20 0
|
13天前
|
编译器 数据库 C语言
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free(上)
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free
23 0
C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free(上)
|
16天前
|
算法 Java Python
【Python 的内存管理机制专栏】Python 内存管理实战:性能优化与内存泄漏检测
【5月更文挑战第18天】Python内存管理关乎程序性能与稳定性。优化包括避免过多临时对象,如优化列表推导式减少对象创建。警惕循环引用造成的内存泄漏,如示例中的Node类。使用`gc`模块检测泄漏,通过`gc.set_debug(gc.DEBUG_LEAK)`和`gc.collect()`获取信息。实践中需持续分析内存使用,优化算法、数据结构和资源释放,以提升程序质量与效率。
【Python 的内存管理机制专栏】Python 内存管理实战:性能优化与内存泄漏检测
|
16天前
|
存储 Java 程序员
【Python 的内存管理机制专栏】深入解析 Python 的内存管理机制:从变量到垃圾回收
【5月更文挑战第18天】Python内存管理关乎程序性能与稳定性,包括变量存储和垃圾回收。变量存储时,如`x = 10`,`x`指向内存中值的引用。垃圾回收通过引用计数自动回收无引用对象,防止内存泄漏。了解此机制可优化内存使用,避免循环引用等问题,提升程序效率和稳定性。深入学习内存管理对成为优秀Python程序员至关重要。
【Python 的内存管理机制专栏】深入解析 Python 的内存管理机制:从变量到垃圾回收
|
19天前
|
存储 编解码 安全
阿里云服务器计算型、通用型、内存型主要实例性能及选择参考
在阿里云的活动中,属于计算型实例规格的云服务器主要有计算型c7、计算型c7a、计算型c8a、计算型c8y、计算型c8i这几个实例规格,属于通用型实例规格的云服务器有通用型g7、通用型g7a、通用型g8a、通用型g8y、通用型g8i,属于内存型实例规格的云服务器有内存型r7、内存型r8a、内存型r8y、内存型r8i等实例。不同实例规格的云服务器在架构、计算、存储、网络、安全等方面有着不同,因此,其适用场景也有所不同。本文来详细介绍一下阿里云服务器计算型、通用型、内存型主要实例计算、存储等性能及其适用场景,以供参考。
阿里云服务器计算型、通用型、内存型主要实例性能及选择参考
|
19天前
|
编译器
LabVIEW使用数据引用减少内存
LabVIEW使用数据引用减少内存
22 2